Two new extragradient methods for solving pseudomonotone the equilibrium problem in Hilbert spaces

被引:0
|
作者
Wairojjana, Nopparat [1 ]
Pholasa, Nattawut [2 ]
Pakkaranang, Nuttapol [3 ]
Panyanak, Bancha [4 ]
机构
[1] Valaya Alongkorn Rajabhat Univ Royal Patronage Pat, Fac Sci &Technol, Appl Math Program, Pathum Thani 13180, Thailand
[2] Univ Phayao, Sch Sci, Mae Ka 56000, Thailand
[3] Phetch Abun Rajabhat Univ, Fac Sci & Technol, Math & Comp Sci Program, Phetchabun 67000, Thailand
[4] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
关键词
Equilibrium problem; Pseudomonotone bifunction; Weak convergence theorem; Variational inequality problem; CONVERGENCE; ALGORITHMS; POINTS;
D O I
10.37193/CJM.2025.01.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper introduces two new extragradient methods designed to solve pseudomonotone equilibrium problems subject to a Lipschitz-type condition. These methods incorporate a variable stepsize criterion that dynamically adjusts with each iteration based on prior iterations. A distinguishing feature of these methods is their independence from prior knowledge of Lipschitz-type constants or any line-search method. The convergence theorems for the proposed methods are established under mild conditions, without requiring the knowledge of Lipschitz-type constants. Additionally, the paper includes several investigations demonstrating the numerical efficacy of the methods and facilitating comparisons with other approaches. This paper contributes to the advancement of computational methods for addressing pseudomonotone equilibrium problems across various applications.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [21] Two new extragradient methods for solving equilibrium problems
    Habib ur Rehman
    Aviv Gibali
    Poom Kumam
    Kanokwan Sitthithakerngkiet
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [22] A class of shrinking projection extragradient methods for solving non-monotone equilibrium problems in Hilbert spaces
    Strodiot, Jean Jacques
    Phan Tu Vuong
    Thi Thu Van Nguyen
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 159 - 178
  • [23] Regularization extragradient methods for equilibrium programming in Hilbert spaces
    Hieu, Dang Van
    Muu, Le Dung
    Kim Quy, Pham
    Duong, Hoang Ngoc
    OPTIMIZATION, 2022, 71 (09) : 2643 - 2673
  • [24] EXTRAGRADIENT ALGORITHMS FOR SPLIT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS IN HILBERT SPACES
    Wang, Shenghua
    Zhang, Yifan
    Wang, Wenxin
    Guo, Haichao
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [25] Adaptive extragradient methods for solving variational inequalities in real Hilbert spaces
    Duong Viet Thong
    Xiao-Huan Li
    Qiao-Li Dong
    Hoang Van Thang
    Luong Van Long
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) : 917 - 937
  • [26] A hybrid extragradient method for solving pseudomonotone equilibrium problems using Bregman distance
    Eskandani, G. Zamani
    Raeisi, M.
    Rassias, Themistocles M.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
  • [27] On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space
    Vuong, Phan Tu
    Strodiot, Jean Jacques
    Nguyen, Van Hien
    OPTIMIZATION, 2015, 64 (02) : 429 - 451
  • [28] A new modified extragradient method with line-search process for solving pseudomonotone variational inequality in Hilbert spaces
    Hu, Shaotao
    Wang, Yuanheng
    Li, Xiaoxiao
    Dong, Qiao-Li
    OPTIMIZATION, 2024, 73 (01) : 229 - 249
  • [29] Two generalized non-monotone explicit strongly convergent extragradient methods for solving pseudomonotone equilibrium problems and applications
    Rehman, Habib Ur
    Kumam, Poom
    ozdemir, Murat
    Karahan, Ibrahim
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 616 - 639
  • [30] Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings
    Dang Van Hieu
    Le Dung Muu
    Pham Ky Anh
    NUMERICAL ALGORITHMS, 2016, 73 (01) : 197 - 217