Two new extragradient methods for solving pseudomonotone the equilibrium problem in Hilbert spaces

被引:0
|
作者
Wairojjana, Nopparat [1 ]
Pholasa, Nattawut [2 ]
Pakkaranang, Nuttapol [3 ]
Panyanak, Bancha [4 ]
机构
[1] Valaya Alongkorn Rajabhat Univ Royal Patronage Pat, Fac Sci &Technol, Appl Math Program, Pathum Thani 13180, Thailand
[2] Univ Phayao, Sch Sci, Mae Ka 56000, Thailand
[3] Phetch Abun Rajabhat Univ, Fac Sci & Technol, Math & Comp Sci Program, Phetchabun 67000, Thailand
[4] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
关键词
Equilibrium problem; Pseudomonotone bifunction; Weak convergence theorem; Variational inequality problem; CONVERGENCE; ALGORITHMS; POINTS;
D O I
10.37193/CJM.2025.01.14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. This paper introduces two new extragradient methods designed to solve pseudomonotone equilibrium problems subject to a Lipschitz-type condition. These methods incorporate a variable stepsize criterion that dynamically adjusts with each iteration based on prior iterations. A distinguishing feature of these methods is their independence from prior knowledge of Lipschitz-type constants or any line-search method. The convergence theorems for the proposed methods are established under mild conditions, without requiring the knowledge of Lipschitz-type constants. Additionally, the paper includes several investigations demonstrating the numerical efficacy of the methods and facilitating comparisons with other approaches. This paper contributes to the advancement of computational methods for addressing pseudomonotone equilibrium problems across various applications.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 50 条
  • [1] The inertial iterative extragradient methods for solving pseudomonotone equilibrium programming in Hilbert spaces
    Rehman, Habib Ur
    Kumam, Poom
    Argyros, Ioannis K.
    Kumam, Wiyada
    Shutaywi, Meshal
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [2] The inertial iterative extragradient methods for solving pseudomonotone equilibrium programming in Hilbert spaces
    Habib ur Rehman
    Poom Kumam
    Ioannis K. Argyros
    Wiyada Kumam
    Meshal Shutaywi
    Journal of Inequalities and Applications, 2022
  • [3] An inertial extragradient method for solving strongly pseudomonotone equilibrium problems in Hilbert spaces
    Le, Thi Thanh Hai
    Thong, Duong Viet
    Vuong, Phan Tu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (06):
  • [4] Improved subgradient extragradient methods for solving pseudomonotone variational inequalities in Hilbert spaces
    Duong Viet Thong
    Phan Tu Vuong
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 221 - 238
  • [5] New Extragradient Methods with Non-Convex Combination for Pseudomonotone Equilibrium Problems with Applications in Hilbert Spaces
    Wang, Shenghua
    Zhang, Yifan
    Ping, Ping
    Cho, Yeol Je
    Guo, Haichao
    FILOMAT, 2019, 33 (06) : 1677 - 1693
  • [6] Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces
    Jolaoso, Lateef Olakunle
    Okeke, Christian Chibueze
    Shehu, Yekini
    NETWORKS & SPATIAL ECONOMICS, 2021, 21 (04): : 873 - 903
  • [7] Extragradient Algorithm for Solving Pseudomonotone Equilibrium Problem with Bregman Distance in Reflexive Banach Spaces
    Lateef Olakunle Jolaoso
    Christian Chibueze Okeke
    Yekini Shehu
    Networks and Spatial Economics, 2021, 21 : 873 - 903
  • [8] Relaxed extragradient algorithm for solving pseudomonotone variational inequalities in Hilbert spaces
    Hieu, Dang Van
    Cho, Yeol Je
    Xiao, Yi-bin
    Kumam, Poom
    OPTIMIZATION, 2020, 69 (10) : 2279 - 2304
  • [9] A new inertial condition on the subgradient extragradient method for solving pseudomonotone equilibrium problem
    Izuchukwu, Chinedu
    Ogwo, Grace Nnennaya
    Zinsou, Bertin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [10] Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Tan, Bing
    OPTIMIZATION, 2024, 73 (05) : 1329 - 1354