Predicting the pro-longevity or anti-longevity effect of model organism genes with enhanced Gaussian noise augmentation-based contrastive learning on protein-protein interaction networks

被引:0
作者
Alsaggaf, Ibrahim [1 ]
Freitas, Alex A. [2 ]
Wan, Cen [1 ]
机构
[1] Univ London, Birkbeck, Sch Comp & Math Sci, London WC1E 7HX, England
[2] Univ Kent, Sch Comp, Canterbury CT2 7FS, Kent, England
关键词
D O I
10.1093/nargab/lqae153
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ageing is a highly complex and important biological process that plays major roles in many diseases. Therefore, it is essential to better understand the molecular mechanisms of ageing-related genes. In this work, we proposed a novel enhanced Gaussian noise augmentation-based contrastive learning (EGsCL) framework to predict the pro-longevity or anti-longevity effect of four model organisms' ageing-related genes by exploiting protein-protein interaction (PPI) networks. The experimental results suggest that EGsCL successfully outperformed the conventional Gaussian noise augmentation-based contrastive learning methods and obtained state-of-the-art performance on three model organisms' predictive tasks when merely relying on PPI network data. In addition, we use EGsCL to predict 10 novel pro-/anti-longevity mouse genes and discuss the support for these predictions in the literature.
引用
收藏
页数:11
相关论文
共 67 条
[41]  
Qu YR, 2020, Arxiv, DOI arXiv:2010.08670
[42]   ARID3a expression in human hematopoietic stem cells is associated with distinct gene patterns in aged individuals [J].
Ratliff, Michelle L. ;
Garton, Joshua ;
James, Judith A. ;
Webb, Carol F. .
IMMUNITY & AGEING, 2020, 17 (01)
[43]   The Bright side of hematopoiesis: regulatory roles of ARID3a/Bright in human and mouse hematopoiesis [J].
Ratliff, Michelle L. ;
Templeton, Troy D. ;
Ward, Julie M. ;
Webb, Carol F. .
FRONTIERS IN IMMUNOLOGY, 2014, 5 :1-8
[44]   Seven knowledge gaps in modern biogerontology [J].
Rattan, Suresh I. S. .
BIOGERONTOLOGY, 2024, 25 (01) :1-8
[45]  
Ribeiro C, 2023, AGING-US, V15, P6073, DOI 10.18632/aging.204866
[46]  
Robinson J., 2020, arXiv
[47]   Hypoxia extends lifespan and neurological function in a mouse model of aging [J].
Rogers, Robert S. ;
Wang, Hong ;
Durham, Timothy J. ;
Stefely, Jonathan A. ;
Owiti, Norah A. ;
Markhard, Andrew L. ;
Sandler, Lev ;
To, Tsz-Leung ;
Mootha, Vamsi K. .
PLOS BIOLOGY, 2023, 21 (05)
[48]   A hierarchical network of hypoxia-inducible factor and SMAD proteins governs procollagen lysyl hydroxylase 2 induction by hypoxia and transforming growth factor?1 [J].
Rosell-Garcia, Tamara ;
Palomo-Alvarez, Oscar ;
Rodriguez-Pascual, Fernando .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (39) :14308-14318
[49]  
Sayers EW, 2020, NUCLEIC ACIDS RES, V48, pD9, DOI [10.1093/nar/gkz899, 10.1093/nar/gkaa892, 10.1093/nar/gkv1290]
[50]   New hallmarks of ageing: a 2022 Copenhagen ageing meeting summary [J].
Schmauck-Medina, Tomas ;
Moliere, Adrian ;
Lautrup, Sofie ;
Zhang, Jianying ;
Chlopicki, Stefan ;
Madsen, Helena Borland ;
Cao, Shuqin ;
Soendenbroe, Casper ;
Mansell, Els ;
Vestergaard, Mark Bitsch ;
Li, Zhiquan ;
Shiloh, Yosef ;
Opresko, Patricia L. ;
Egly, Jean-Marc ;
Kirkwood, Thomas ;
Verdin, Eric ;
Bohr, Vilhelm A. ;
Cox, Lynne S. ;
Stevnsner, Tinna ;
Rasmussen, Lene Juel ;
Fang, Evandro F. .
AGING-US, 2022, 14 (16) :6829-6839