Regulating chiral nematic liquid crystal of hydroxypropyl methylcellulose coating on separator for High-Safety Lithium-Ion batteries

被引:0
|
作者
Wang, Xichang [1 ]
Huang, Yun [1 ]
Ren, Wenhao [1 ]
Luo, Chen [1 ]
Xu, Xi [1 ]
Wang, Yiheng [1 ]
Wang, Yanzhou [1 ]
Zhang, Changjian [1 ]
Zhao, Zhongwei [1 ]
Liu, Li [1 ]
Li, Xing [1 ]
Wang, Mingshan [1 ]
Cao, Haijun [2 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[2] Chinese Acad Med Sci, Inst Blood Transfus, Chengdu 610052, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; Separator engineering; Hydroxypropyl methylcellulose; Chiral nematic liquid crystal; Safety; TRANSPORT; CATHODE;
D O I
10.1016/j.cej.2024.158155
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The conventional commercial polypropylene separator (PP) struggles to inhibit the thermal runaway triggered by dendrite short circuits, and its safety cannot meet the needs of the development of high-energy-density batteries. Herein, an easily commercializable design strategy was employed to induce the aqueous solution of natural polymer hydroxypropylmethylcellulose (HPMC) to self-assemble on the surface of the PP separator by Na2SO4, MnSO4, and Al-2(SO4)(3) to form the chiral nematic liquid crystal (CLC) with excellent performance, and finally the thermally stable separators (H-Na@PP, H-Mn@PP, and H-Al@PP) were obtained. Theoretical calculations and experiments demonstrate that the CLC induced by Na+, Mn2+, and Al3+ can interact with the electrolyte solvent to form a desolvation structure of Li+, which reduces the migration barrier of Li+ through the separator and accelerate the Li+ transport. Furthermore, the ordered CLC structure can ensure uniform electric field and Li+ flux. Hence, Li//LFP, Li (50 mu m)//LFP, and Li//NCM811cells are assembled using these modified separators, featuring remarkable cycling stability and high Coulombic efficiency. As the result, H-Na@PP, H-Mn@PP, and H-Al@PP separators in Li//LFP cell display a high initial capacity of 141.2 mAh/g, 146.7 mAh/g and 130.7 mAh/g at 1C, respectively and stable cycling performance over 1000 cycles. Notably, the capacity retention rate remains high at 87 %, 69 %, and 59 % even after 700 cycles, respectively, which are higher than the 21 % capacity retention rate of PP separator. Meanwhile, the pouch cells equipped with these separators deliver exceptional electrochemical performance and show a lower temperature distribution without thermal runaway behavior under the Phi 3 mm nail penetration test, indicating its feasibility for high-safety energy storage systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The chiral nematic liquid crystal of hydroxypropyl methylcellulose coated on separator: Break through safety of LIBs with high electrochemical performances
    Wang, Xichang
    Xu, Xi
    Pu, Silin
    Huang, Yun
    Ren, Wenhao
    Luo, Chen
    Fu, Lei
    Xiao, Jie
    Zeng, Wenping
    Liu, Li
    Li, Xing
    Wang, Mingshan
    Cao, Haijun
    Ma, Xiaoyan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 682 : 784 - 794
  • [2] A paper-supported inorganic composite separator for high-safety lithium-ion batteries
    Wang, Zhonghui
    Xiang, Hongfa
    Wang, Lijuan
    Xia, Ru
    Nie, Shuping
    Chen, Chunhua
    Wang, Haihui
    JOURNAL OF MEMBRANE SCIENCE, 2018, 553 : 10 - 16
  • [3] High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective
    Zhang, Lupeng
    Li, Xinle
    Yang, Mingrui
    Chen, Weihua
    ENERGY STORAGE MATERIALS, 2021, 41 (41) : 522 - 545
  • [4] Nonflammable organic electrolytes for high-safety lithium-ion batteries
    Deng, Kuirong
    Zeng, Qingguang
    Wang, Da
    Liu, Zheng
    Wang, Guangxia
    Qiu, Zhenping
    Zhang, Yangfan
    Xiao, Min
    Meng, Yuezhong
    ENERGY STORAGE MATERIALS, 2020, 32 (32) : 425 - 447
  • [5] High-Safety Anode Materials for Advanced Lithium-Ion Batteries
    Yuan, Kai
    Lin, Yu
    Li, Xiang
    Ding, Yufeng
    Yu, Peng
    Peng, Jian
    Wang, Jiazhao
    Liu, Huakun
    Dou, Shixue
    ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (05)
  • [6] Electrolytes for High-Safety Lithium-Ion Batteries at Low Temperature: A Review
    Yun, Shuhong
    Liang, Xinghua
    Xi, Junjie
    Liao, Leyu
    Cui, Shuwan
    Chen, Lihong
    Li, Siying
    Hu, Qicheng
    POLYMERS, 2024, 16 (18)
  • [7] An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator
    Guobin Zhong
    Yong Wang
    Chao Wang
    Zhonghui Wang
    Song Guo
    Lijuan Wang
    Xin Liang
    Hongfa Xiang
    Ionics, 2019, 25 : 2677 - 2684
  • [8] An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator
    Zhong, Guobin
    Wang, Yong
    Wang, Chao
    Wang, Zhonghui
    Guo, Song
    Wang, Lijuan
    Liang, Xin
    Xiang, Hongfa
    IONICS, 2019, 25 (06) : 2677 - 2684
  • [9] High-Safety Lithium-Ion Batteries with Silicon-Based Anodes Enabled by Electrolyte Design
    Hu, Kangjia
    Sang, Xiaoyu
    Chen, Jiaxin
    Liu, Zetong
    Zhang, Jiahui
    Hu, Xianluo
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (24)
  • [10] Ordered mesogenic units-containing hyperbranched star liquid crystal all-solid-state polymer electrolyte for high-safety lithium-ion batteries
    Wang, Shi
    Wang, Ailian
    Liu, Xu
    Xu, Hao
    Chen, Jie
    Zhang, Liaoyun
    ELECTROCHIMICA ACTA, 2018, 259 : 213 - 224