A semi-supervised non-negative matrix factorization model for scRNA-seq data analysis

被引:0
作者
Lan, Junjie [1 ,2 ]
Zhuo, Xiaoling [1 ,2 ]
Ye, Siman [1 ,2 ]
Deng, Jin [1 ,2 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[2] Pazhou Lab, Guangzhou 510330, Peoples R China
关键词
scRNA-seq; Non-negative matrix factorization; Dimensionality reduction; Clustering; Omics; GENE-EXPRESSION; SINGLE;
D O I
10.1016/j.asoc.2025.112982
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell RNA sequencing (scRNA-seq) technology enables the measurement of cellular gene expression at the single-cell level, thus facilitating cell clustering at the gene level. Despite numerous dimensionality reduction methods developed for scRNA-seq data, many are limited to analyzing individual gene expression matrices and struggle to address false positives and false zero expression entries effectively. Moreover, existing methods often underutilize prior knowledge of similarity and dissimilarity between multi-omics data, leading to the loss of intercellular correlations and shared structural information, thus hindering desired dimensionality reduction outcomes. To address these limitations, a novel model termed joint non-negative matrix factorization with similarity and dissimilarity constraints (SDJNMF) was proposed to tailor for scRNA-seq data clustering. The model leverages prior knowledge of similarity and dissimilarity across multiple gene expression matrices, facilitating joint non-negative matrix factorization to extract common features from multi-omics data. By preserving shared structural and cellular relevance information, SDJNMF enhances the clustering of similar cells while effectively separating dissimilar ones. Furthermore, the SDJNMF model incorporates sparse Singular Value Decomposition during initialization to mitigate noise and redundancy and ensure robust dimensionality reduction. The experimental results demonstrate that the SDJNMF model exhibits superior performance on the 10 datasets, not only outperforming the other 14 algorithms in terms of clustering accuracy on the 9 datasets, but also enhancing the ARI of SDJNMF by an average of 0.0687 in comparison to the second-best algorithm on each dataset. In the visual representation, the model is able to efficiently and accurately cluster similar cells and effectively discriminate different classes of cells from each other. Additionally, the SDJNMF model was applied to identify informative genes and conduct enrichment analysis, validating that genes identified by SDJNMF significantly influence biological processes. Overall, the SDJNMF offers innovative tools for cell cluster identification and advances biological research. The source code of SDJNMF is available online at https://github.com/Jindsmu/SDJNMF.
引用
收藏
页数:17
相关论文
共 71 条
[1]  
Amblard E, 2021, bioRxiv, DOI [10.1101/2021.03.18.435808, 10.1101/2021.03.18.435808, DOI 10.1101/2021.03.18.435808]
[2]   Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data [J].
Andrews, Tallulah S. ;
Kiselev, Vladimir Yu ;
McCarthy, Davis ;
Hemberg, Martin .
NATURE PROTOCOLS, 2021, 16 (01) :1-9
[3]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[4]   Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing [J].
Blase, Fernando H. ;
Cao, Xiaoyi ;
Zhong, Sheng .
GENOME RESEARCH, 2014, 24 (11) :1787-1796
[5]   SVD based initialization: A head start for nonnegative matrix factorization [J].
Boutsidis, C. ;
Gallopoulos, E. .
PATTERN RECOGNITION, 2008, 41 (04) :1350-1362
[6]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[7]   Graph Regularized Nonnegative Matrix Factorization for Data Representation [J].
Cai, Deng ;
He, Xiaofei ;
Han, Jiawei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1548-1560
[8]   A review on semi-supervised clustering [J].
Cai, Jianghui ;
Hao, Jing ;
Yang, Haifeng ;
Zhao, Xujun ;
Yang, Yuqing .
INFORMATION SCIENCES, 2023, 632 :164-200
[9]   TBtools-II: A "one for all, all for one"bioinformatics platform for biological big-data mining [J].
Chen, Chengjie ;
Wu, Ya ;
Li, Jiawei ;
Wang, Xiao ;
Zeng, Zaohai ;
Xu, Jing ;
Liu, Yuanlong ;
Feng, Junting ;
Chen, Hao ;
He, Yehua ;
Xia, Rui .
MOLECULAR PLANT, 2023, 16 (11) :1733-1742
[10]   Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm [J].
Chu, Li-Fang ;
Leng, Ning ;
Zhang, Jue ;
Hou, Zhonggang ;
Mamott, Daniel ;
Vereide, David T. ;
Choi, Jeea ;
Kendziorski, Christina ;
Stewart, Ron ;
Thomson, James A. .
GENOME BIOLOGY, 2016, 17