Unlocking the potential of quantum computing in prefabricated construction supply chains: Current trends, challenges, and future directions

被引:2
作者
Chen, Zhen-Song [1 ,2 ]
Tan, Yue [1 ]
Ma, Zheng [1 ]
Zhu, Zhengze [3 ]
Skibniewski, Miroslaw J. [4 ,5 ,6 ]
机构
[1] Wuhan Univ, Sch Civil Engn, Wuhan 430072, Peoples R China
[2] City Univ Macau, Fac Business, Taipa 999078, Macau, Peoples R China
[3] Hubei Univ Automot Technol, Inst Automot Engineers, Shiyan 442002, Peoples R China
[4] Univ Maryland, Dept Civil & Environm Engn, College Pk, MD 20742 USA
[5] Chaoyang Univ Technol, Taichung 413310, Taiwan
[6] Polish Acad Sci, Inst Theoret & Appl Informat, PL-44100 Gliwice, Poland
基金
中国国家自然科学基金;
关键词
Quantum computing; Prefabricated construction; Supply chain management; Production scheduling; Inventory management; Transportation management; VEHICLE-ROUTING PROBLEM; GENETIC ALGORITHM; FLOW-SHOP; INVENTORY; MODEL; TECHNOLOGY; DEMAND; SYSTEM; RISK;
D O I
10.1016/j.inffus.2025.103043
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The intricate nature of prefabricated construction supply chain management (PCSCM) presents ongoing challenges in production scheduling, inventory control, and logistics coordination. Recent advances in quantum computing (QC) offer compelling approaches to address these multifaceted issues by enabling significantly faster and more precise optimization. This paper systematically reviews and synthesizes existing QC research in the supply chain context, particularly focusing on quantum algorithms that target the PCSCM lifecycle. Our analysis identifies three key domains: production, inventory, and transportation, in which QC can outperform classical methods, as evidenced by enhanced scheduling flexibility and cost minimization. However, our findings also highlight crucial bottlenecks, including quantum hardware limitations, organizational readiness gaps, and a lack of specialized interdisciplinary talent. We propose a framework of strategies to guide QC adoption, such as specialized algorithm development, collaborative research partnerships, and standardized data protocols. These insights offer promising future directions for leveraging QC to streamline operations and boost sustainability in the prefabricated construction sector.
引用
收藏
页数:17
相关论文
共 143 条
[1]   Genetic algorithms as classical optimizer for the Quantum Approximate Optimization Algorithm [J].
Acampora, Giovanni ;
Chiatto, Angela ;
Vitiello, Autilia .
APPLIED SOFT COMPUTING, 2023, 142
[2]   Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures [J].
Afshari, Hamid ;
Hare, Warren ;
Tesfamariam, Solomon .
APPLIED SOFT COMPUTING, 2019, 83
[3]   Integrating off-site and on-site panelized construction schedules using fleet dispatching [J].
Ahn, Sang Jun ;
Han, SangUk ;
Altaf, Mohammed Sadiq ;
Al-Hussein, Mohamed .
AUTOMATION IN CONSTRUCTION, 2022, 137
[4]   Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems [J].
Ajagekar, Akshay ;
Humble, Travis ;
You, Fengqi .
COMPUTERS & CHEMICAL ENGINEERING, 2020, 132
[5]   Quantum computing for energy systems optimization: Challenges and opportunities [J].
Ajagekar, Akshay ;
You, Fengqi .
ENERGY, 2019, 179 :76-89
[6]   A Fuzzy Inventory Model for a Deteriorating Item with Variable Demand, Permissible Delay in Payments and Partial Backlogging with Shortage Follows Inventory (SFI) Policy [J].
Akbar Shaikh, Ali ;
Bhunia, Asoke Kumar ;
Eduardo Cardenas-Barron, Leopoldo ;
Sahoo, Laxminarayan ;
Tiwari, Sunil .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (05) :1606-1623
[7]  
Al-Thaqeb S.A., 2019, J. Econ. Asymmetries, V20, DOI [DOI 10.1016/J.JECA.2019.E00133, 10.1016/j.jeca.2019.e00133]
[8]  
Altaf MS, 2020, CONSTRUCTION RESEARCH CONGRESS 2020: COMPUTER APPLICATIONS, P29
[9]   A case study of variational quantum algorithms for a job shop scheduling problem [J].
Amaro, David ;
Rosenkranz, Matthias ;
Fitzpatrick, Nathan ;
Hirano, Koji ;
Fiorentini, Mattia .
EPJ QUANTUM TECHNOLOGY, 2022, 9 (01)
[10]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+