Stokes Waves in Finite Depth Fluids

被引:0
作者
Semenova, Anastassiya [1 ]
Byrnes, Eleanor [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
Water waves; Finite depth fluids; Numerical simulations; STEEP GRAVITY-WAVES; SURFACE; WATER; CONJECTURE; EXISTENCE;
D O I
10.1007/s42286-024-00108-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider traveling waves on a surface of an ideal fluid of finite depth. The equation describing Stokes waves in conformal variables formulation are referred to as the Babenko equation. We use a Newton-Conjugate-Gradient method to compute Stokes waves for a range of conformal depths from deep to shallow water. In deep water, we compute eigenvalues of the linearized Babenko equation with Fourier-Floquet-Hill method. The secondary bifurcation points that correspond to double period bifurcations of the Stokes waves are identified on the family of waves. In shallow water, we find solutions that have broad troughs and sharp crests, and which resemble cnoidal or soliton-like solution profiles of the Korteweg-de Vries equation. Regardless of depth, we find that these solutions form a 2 pi/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi /3$$\end{document} angle at the crest in the limit of large steepness.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 48 条
[1]   On a new non-local formulation of water waves [J].
Ablowitz, M. J. ;
Fokas, A. S. ;
Musslimani, Z. H. .
JOURNAL OF FLUID MECHANICS, 2006, 562 :313-343
[2]   ON THE BEHAVIOR NEAR THE CREST OF WAVES OF EXTREME FORM [J].
AMICK, CJ ;
FRAENKEL, LE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (01) :273-298
[3]   ON THE STOKES CONJECTURE FOR THE WAVE OF EXTREME FORM [J].
AMICK, CJ ;
FRAENKEL, LE ;
TOLAND, JF .
ACTA MATHEMATICA, 1982, 148 :193-214
[4]  
BABENKO KI, 1987, DOKL AKAD NAUK SSSR+, V294, P1033
[5]   Exact evolution equations for surface waves [J].
Choi, W ;
Camassa, R .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1999, 125 (07) :756-760
[6]   STEEP GRAVITY-WAVES IN WATER OF ARBITRARY UNIFORM DEPTH [J].
COKELET, ED .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 286 (1335) :183-230
[7]   NUMERICAL-SIMULATION OF GRAVITY-WAVES [J].
CRAIG, W ;
SULEM, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :73-83
[8]   High-frequency instabilities of Stokes waves [J].
Creedon, Ryan P. ;
Deconinck, Bernard ;
Trichtchenko, Olga .
JOURNAL OF FLUID MECHANICS, 2022, 937
[9]   Self-similarity and recurrence in stability spectra of near-extreme Stokes waves [J].
Deconinck, B. ;
Dyachenko, S. A. ;
Semenova, A. .
JOURNAL OF FLUID MECHANICS, 2024, 995
[10]   The dominant instability of near-extreme Stokes waves [J].
Deconinck, Bernard ;
Dyachenko, Sergey A. ;
Lushnikov, Pavel M. ;
Semenova, Anastassiya .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (32)