On the Harmonic Characterization Of The Spheres: A Sharp Stability Inequality

被引:0
|
作者
Cupini, Giovanni [1 ]
Lanconelli, Ermanno [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Surface gauss mean value formula; Stability; Harmonic functions; Rigidity;
D O I
10.1007/s11118-025-10200-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with finite (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-dimensional Hausdorff measure |partial derivative D|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial D|$$\end{document} and let x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 $$\end{document} be a point of D. We introduce a new harmonic invariant, that we call Kuran gap of partial derivative D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D$$\end{document} w.r.t. x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. To define this new invariant, denoted K(partial derivative D,x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(\partial D, x_0)$$\end{document}, we use a family of harmonic functions introduced by Kuran (Bull. London Math. Soc. 4, 311-312, 1972). Our main stability result can be described as follows: if partial derivative D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D$$\end{document} is sufficiently regular just in one of the points of partial derivative D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D$$\end{document} nearest to x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}, then K(partial derivative D,x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(\partial D, x_0)$$\end{document} is bounded from below by a kind of isoperimetric index, precisely the normalized difference between |partial derivative D|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial D|$$\end{document} and |partial derivative B|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial B|$$\end{document}, being B the biggest ball contained in D and centered at x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. This partially extends and improves a stability result by Preiss and Toro. By our stability result, we also obtain new rigidity results: (i) a characterization of the Euclidean spheres in terms of single-layer potentials, improving previous theorems by Fichera and by Shahgholian; (ii) a sufficient condition for a harmonic pseudosphere to be a Euclidean sphere, partially extending and improving rigidity results by Lewis and Vogel.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] On the Stability of Minimal Submanifolds in Conformal Spheres
    Franz, Giada
    Trinca, Federico
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (10)
  • [32] Stability of the elliptic Harnack inequality
    Barlow, Martin T.
    Murugan, Mathav
    ANNALS OF MATHEMATICS, 2018, 187 (03) : 777 - 823
  • [33] On the Stability of Minimal Submanifolds in Conformal Spheres
    Giada Franz
    Federico Trinca
    The Journal of Geometric Analysis, 2023, 33
  • [34] Sharp constant of an improved Gagliardo-Nirenberg inequality and its application
    Chen, Jianqing
    Guo, Boling
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (02) : 341 - 354
  • [35] ON A SHARP INEQUALITY RELATING YAMABE INVARIANTS ON A POINCARE-EINSTEIN MANIFOLD
    Wang, Xiaodong
    Wang, Zhixin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4923 - 4929
  • [36] Sharp Constant of an Anisotropic Gagliardo-Nirenberg-Type Inequality and Applications
    Esfahani, Amin
    Pastor, Ademir
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 171 - 185
  • [37] Sharp stability inequalities for planar double bubbles
    Cicalese, Marco
    Leonardi, Gian Paolo
    Maggi, Francesco
    INTERFACES AND FREE BOUNDARIES, 2017, 19 (03) : 305 - 350
  • [38] A Riesz-Fejer type inequality for harmonic functions
    Das, Suman
    Kaliraj, Anbareeswaran Sairam
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
  • [39] On the Harnack inequality for antisymmetric s-harmonic functions
    Dipierro, Serena
    Thompson, Jack
    Valdinoci, Enrico
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (01)
  • [40] Stability of harmonic morphisms to a surface
    Montaldo, S
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (07) : 865 - 875