On the Harmonic Characterization Of The Spheres: A Sharp Stability Inequality

被引:0
|
作者
Cupini, Giovanni [1 ]
Lanconelli, Ermanno [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
关键词
Surface gauss mean value formula; Stability; Harmonic functions; Rigidity;
D O I
10.1007/s11118-025-10200-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a bounded open subset of Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with finite (n-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n-1)$$\end{document}-dimensional Hausdorff measure |partial derivative D|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial D|$$\end{document} and let x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0 $$\end{document} be a point of D. We introduce a new harmonic invariant, that we call Kuran gap of partial derivative D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D$$\end{document} w.r.t. x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. To define this new invariant, denoted K(partial derivative D,x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(\partial D, x_0)$$\end{document}, we use a family of harmonic functions introduced by Kuran (Bull. London Math. Soc. 4, 311-312, 1972). Our main stability result can be described as follows: if partial derivative D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D$$\end{document} is sufficiently regular just in one of the points of partial derivative D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial D$$\end{document} nearest to x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}, then K(partial derivative D,x0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}(\partial D, x_0)$$\end{document} is bounded from below by a kind of isoperimetric index, precisely the normalized difference between |partial derivative D|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial D|$$\end{document} and |partial derivative B|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\partial B|$$\end{document}, being B the biggest ball contained in D and centered at x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0$$\end{document}. This partially extends and improves a stability result by Preiss and Toro. By our stability result, we also obtain new rigidity results: (i) a characterization of the Euclidean spheres in terms of single-layer potentials, improving previous theorems by Fichera and by Shahgholian; (ii) a sufficient condition for a harmonic pseudosphere to be a Euclidean sphere, partially extending and improving rigidity results by Lewis and Vogel.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Microscopic theory of the jamming transition of harmonic spheres
    Berthier, Ludovic
    Jacquin, Hugo
    Zamponi, Francesco
    PHYSICAL REVIEW E, 2011, 84 (05):
  • [22] Stability properties of weak sharp minima
    Studniarski, M
    Taha, AWA
    CONTROL AND CYBERNETICS, 2003, 32 (02): : 351 - 359
  • [23] Stability of -Harmonic Maps
    Pirbodaghi, Zahra
    Rezaii, Morteza Mirmohammad
    Torbaghan, Seyed Mehdi Kazemi
    MATHEMATICS, 2018, 6 (06):
  • [24] A SHARP INEQUALITY FOR TRACE-FREE MATRICES WITH APPLICATIONS TO HYPERSURFACES
    Case, Jeffrey S.
    Tyrrell, Aaron J.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (02) : 823 - 828
  • [25] The sharp quantitative isocapacitary inequality (the case of p-capacity)
    Mukoseeva, Ekaterina
    ADVANCES IN CALCULUS OF VARIATIONS, 2023, 16 (01) : 131 - 162
  • [27] THE ISOPERIMETRIC INEQUALITY AND ITS STABILITY
    Li, Chang-Jun
    Gao, Xiang
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 897 - 912
  • [28] On the stability of the polygonal isoperimetric inequality
    Indrei, E.
    Nurbekyan, L.
    ADVANCES IN MATHEMATICS, 2015, 276 : 62 - 86
  • [29] Stability for the logarithmic Sobolev inequality
    Brigati, Giovanni
    Dolbeault, Jean
    Simonov, Nikita
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [30] Stability of a reverse isoperimetric inequality
    Pan, Shengliang
    Xu, Huiping
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) : 348 - 353