Motion Planning and Control with Environmental Uncertainties for Humanoid Robot

被引:0
作者
Jiang, Zhiyong [1 ]
Wang, Yu [2 ]
Wang, Siyu [2 ]
Bi, Sheng [2 ]
Chen, Jiangcheng [2 ]
机构
[1] China Elect Technol Grp Corp, Res Inst 21, Robot Engn Ctr, Shanghai 200233, Peoples R China
[2] Shenzhen Acad Robot, Shenzhen 518057, Peoples R China
关键词
humanoid robots; motion planning; dynamic balance; perceptive control; environment uncertainties; PREDICTIVE CONTROL; LOCOMOTION; PATH;
D O I
10.3390/s24237652
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Humanoid robots are typically designed for static environments, but real-world applications demand robust performance under dynamic, uncertain conditions. This paper introduces a perceptive motion planning and control algorithm that enables humanoid robots to navigate and operate effectively in environments with unpredictable kinematic and dynamic disturbances. The proposed algorithm ensures synchronized multi-limb motion while maintaining dynamic balance, utilizing real-time feedback from force, torque, and inertia sensors. Experimental results demonstrate the algorithm's adaptability and robustness in handling complex tasks, including walking on uneven terrain and responding to external disturbances. These findings highlight the potential of perceptive motion planning in enhancing the versatility and resilience of humanoid robots in uncertain environments. The results have potential applications in search-and-rescue missions, healthcare robotics, and industrial automation, where robots operate in unpredictable or dynamic conditions.
引用
收藏
页数:17
相关论文
共 32 条
  • [1] Exploring Kinodynamic Fabrics for Reactive Whole-Body Control of Underactuated Humanoid Robots
    Adu-Bredu, Alphonsus
    Gibson, Grant
    Grizzle, Jessy
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 10397 - 10404
  • [2] Path planning in the presence of soft tissue deformation
    Bahwini, Tariq
    Zhong, Yongmin
    Gu, Chengfan
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM, 2019, 13 (04): : 1603 - 1616
  • [3] Robust Feedback Motion Policy Design Using Reinforcement Learning on a 3D Digit Bipedal Robot
    Castillo, Guillermo A.
    Weng, Bowen
    Zhang, Wei
    Hereid, Ayonga
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 5136 - 5143
  • [4] Tracking a joint path for the walk of an underactuated biped
    Chevallereau, C
    Formal'sky, A
    Djoudi, D
    [J]. ROBOTICA, 2004, 22 : 15 - 28
  • [5] Feng SY, 2014, IEEE-RAS INT C HUMAN, P120, DOI 10.1109/HUMANOIDS.2014.7041347
  • [6] Model Predictive Control in Industry: Challenges and Opportunities
    Forbes, Michael G.
    Patwardhan, Rohit S.
    Hamadah, Hamza
    Gopaluni, R. Bhushan
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 531 - 538
  • [7] Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway
    Gong, Yukai
    Hartley, Ross
    Da, Xingye
    Hereid, Ayonga
    Harib, Omar
    Huang, Jiunn-Kai
    Grizzle, Jessy
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4559 - 4566
  • [8] Quadrupedal Locomotion via Event-Based Predictive Control and QP-Based Virtual Constraints
    Hamed, Kaveh Akbari
    Kim, Jeeseop
    Pandala, Abhishek
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (03) : 4463 - 4470
  • [9] Model-Predictive Control of Multilevel Inverters: Challenges, Recent Advances, and Trends
    Harbi, Ibrahim
    Rodriguez, Jose
    Liegmann, Eyke
    Makhamreh, Hamza
    Heldwein, Marcelo Lobo
    Novak, Mateja
    Rossi, Mattia
    Abdelrahem, Mohamed
    Trabelsi, Mohamed
    Ahmed, Mostafa
    Karamanakos, Petros
    Xu, Shuai
    Dragicevic, Tomislav
    Kennel, Ralph
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (09) : 10845 - 10868
  • [10] Hills Jeremy, 2014, International Journal of Agile Systems and Management, V7, P261, DOI 10.1504/IJASM.2014.065351