Application of MRI image segmentation algorithm for brain tumors based on improved YOLO

被引:0
作者
Yang, Tao [1 ]
Lu, Xueqi [2 ]
Yang, Lanlan [1 ]
Yang, Miyang [1 ]
Chen, Jinghui [1 ]
Zhao, Hongjia [3 ]
机构
[1] Fujian Univ Tradit Chinese Med, Affiliated Peoples Hosp, Clin Med Coll 1, Fuzhou, Fujian, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[3] Fujian Univ Tradit Chinese Med, Affiliated Peoples Hosp, Fuzhou, Peoples R China
关键词
artificial intelligence; image segmentation; brain tumor; magnetic resonance; YOLOv5s;
D O I
10.3389/fnins.2024.1510175
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective To assist in the rapid clinical identification of brain tumor types while achieving segmentation detection, this study investigates the feasibility of applying the deep learning YOLOv5s algorithm model to the segmentation of brain tumor magnetic resonance images and optimizes and upgrades it on this basis.Methods The research institute utilized two public datasets of meningioma and glioma magnetic resonance imaging from Kaggle. Dataset 1 contains a total of 3,223 images, and Dataset 2 contains 216 images. From Dataset 1, we randomly selected 3,000 images and used the Labelimg tool to annotate the cancerous regions within the images. These images were then divided into training and validation sets in a 7:3 ratio. The remaining 223 images, along with Dataset 2, were ultimately used as the internal test set and external test set, respectively, to evaluate the model's segmentation effect. A series of optimizations were made to the original YOLOv5 algorithm, introducing the Atrous Spatial Pyramid Pooling (ASPP), Convolutional Block Attention Module (CBAM), Coordinate Attention (CA) for structural improvement, resulting in several optimized versions, namely YOLOv5s-ASPP, YOLOv5s-CBAM, YOLOv5s-CA, YOLOv5s-ASPP-CBAM, and YOLOv5s-ASPP-CA. The training and validation sets were input into the original YOLOv5s model, five optimized models, and the YOLOv8s model for 100 rounds of iterative training. The best weight file of the model with the best evaluation index in the six trained models was used for the final test of the test set.Results After iterative training, the seven models can segment and recognize brain tumor magnetic resonance images. Their precision rates on the validation set are 92.5, 93.5, 91.2, 91.8, 89.6, 90.8, and 93.1%, respectively. The corresponding recall rates are 84, 85.3, 85.4, 84.7, 87.3, 85.4, and 91.9%. The best weight file of the model with the best evaluation index among the six trained models was tested on the test set, and the improved model significantly enhanced the image segmentation ability compared to the original model.Conclusion Compared with the original YOLOv5s model, among the five improved models, the improved YOLOv5s-ASPP model significantly enhanced the segmentation ability of brain tumor magnetic resonance images, which is helpful in assisting clinical diagnosis and treatment planning.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] MEDICAL IMAGE SEGMENTATION BASED ON IMPROVED WATERSHED ALGORITHM
    Li Jing-Yu
    Jin Cheng
    Mu Wei-Bin
    Geng Kui
    Zhang Yan
    2011 INTERNATIONAL CONFERENCE ON COMPUTER AND COMPUTATIONAL INTELLIGENCE (ICCCI 2011), 2012, : 475 - 481
  • [32] Improved clustering algorithm for image segmentation based on CSA
    Zhang, Xiaohua
    Yang, Pu
    Jiao, Licheng
    Hou, Xiaojin
    MIPPR 2007: AUTOMATIC TARGET RECOGNITION AND IMAGE ANALYSIS; AND MULTISPECTRAL IMAGE ACQUISITION, PTS 1 AND 2, 2007, 6786
  • [33] Research on Improved Image Segmentation Algorithm Based on GrabCut
    Pang, Shangzhen
    Thio, Tzer Hwai Gilbert
    Siaw, Fei Lu
    Chen, Mingju
    Xia, Yule
    ELECTRONICS, 2024, 13 (20)
  • [34] An improved image segmentation based on mean shift algorithm
    Chen, HF
    Qi, FH
    CHINESE JOURNAL OF ELECTRONICS, 2003, 12 (03): : 368 - 372
  • [35] Image Segmentation Based on Improved Fuzzy Clustering Algorithm
    Zhao, Chunhui
    Zhang, Zhiyuan
    Hu, Jinwen
    Fan, Bin
    Wu, Shuli
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 495 - 500
  • [36] Image Segmentation Based on Improved Adaptive Genetic Algorithm
    Chen Zujue
    Fu Xianxiang
    Zhou Xiang
    FUNCTIONAL MANUFACTURING TECHNOLOGIES AND CEEUSRO II, 2011, 464 : 151 - 154
  • [37] An Algorithm for Detecting Brain Tumors in MRI Images
    Badran, Ehab F.
    Mahmoud, Esraa Galal
    Hamdy, Nadder
    ICCES'2010: THE 2010 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS, 2010, : 368 - 373
  • [38] An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation
    Ling, Lei
    Huang, Lijun
    Wang, Jie
    Zhang, Li
    Wu, Yue
    Jiang, Yizhang
    Xia, Kaijian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (03): : 2353 - 2379
  • [39] FULLY AUTOMATIC FRAMEWORK FOR SEGMENTATION OF BRAIN MRI IMAGE
    林盘
    郑崇勋
    杨勇
    顾建文
    Academic Journal of Xi'an Jiaotong University, 2005, (01) : 25 - 28
  • [40] Integrating fuzzy entropy clustering with an improved PSO for MRI brain image segmentation
    Thuy Xuan Pham
    Siarry, Patrick
    Oulhadj, Hamouche
    APPLIED SOFT COMPUTING, 2018, 65 : 230 - 242