Application of MRI image segmentation algorithm for brain tumors based on improved YOLO

被引:0
|
作者
Yang, Tao [1 ]
Lu, Xueqi [2 ]
Yang, Lanlan [1 ]
Yang, Miyang [1 ]
Chen, Jinghui [1 ]
Zhao, Hongjia [3 ]
机构
[1] Fujian Univ Tradit Chinese Med, Affiliated Peoples Hosp, Clin Med Coll 1, Fuzhou, Fujian, Peoples R China
[2] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[3] Fujian Univ Tradit Chinese Med, Affiliated Peoples Hosp, Fuzhou, Peoples R China
关键词
artificial intelligence; image segmentation; brain tumor; magnetic resonance; YOLOv5s;
D O I
10.3389/fnins.2024.1510175
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective To assist in the rapid clinical identification of brain tumor types while achieving segmentation detection, this study investigates the feasibility of applying the deep learning YOLOv5s algorithm model to the segmentation of brain tumor magnetic resonance images and optimizes and upgrades it on this basis.Methods The research institute utilized two public datasets of meningioma and glioma magnetic resonance imaging from Kaggle. Dataset 1 contains a total of 3,223 images, and Dataset 2 contains 216 images. From Dataset 1, we randomly selected 3,000 images and used the Labelimg tool to annotate the cancerous regions within the images. These images were then divided into training and validation sets in a 7:3 ratio. The remaining 223 images, along with Dataset 2, were ultimately used as the internal test set and external test set, respectively, to evaluate the model's segmentation effect. A series of optimizations were made to the original YOLOv5 algorithm, introducing the Atrous Spatial Pyramid Pooling (ASPP), Convolutional Block Attention Module (CBAM), Coordinate Attention (CA) for structural improvement, resulting in several optimized versions, namely YOLOv5s-ASPP, YOLOv5s-CBAM, YOLOv5s-CA, YOLOv5s-ASPP-CBAM, and YOLOv5s-ASPP-CA. The training and validation sets were input into the original YOLOv5s model, five optimized models, and the YOLOv8s model for 100 rounds of iterative training. The best weight file of the model with the best evaluation index in the six trained models was used for the final test of the test set.Results After iterative training, the seven models can segment and recognize brain tumor magnetic resonance images. Their precision rates on the validation set are 92.5, 93.5, 91.2, 91.8, 89.6, 90.8, and 93.1%, respectively. The corresponding recall rates are 84, 85.3, 85.4, 84.7, 87.3, 85.4, and 91.9%. The best weight file of the model with the best evaluation index among the six trained models was tested on the test set, and the improved model significantly enhanced the image segmentation ability compared to the original model.Conclusion Compared with the original YOLOv5s model, among the five improved models, the improved YOLOv5s-ASPP model significantly enhanced the segmentation ability of brain tumor magnetic resonance images, which is helpful in assisting clinical diagnosis and treatment planning.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An Image Segmentation Algorithm Based On Improved PCNN
    Song, Yin-mao
    Ren, Shu-bin
    Liu, Guole
    PROCEEDINGS OF 2010 INTERNATIONAL SYMPOSIUM ON IMAGE ANALYSIS AND SIGNAL PROCESSING, 2010, : 25 - 30
  • [32] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Zhang, Lei
    Lan, Chaofeng
    Fu, Lirong
    Mao, Xiuhuan
    Zhang, Meng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 2277 - 2285
  • [33] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Lei Zhang
    Chaofeng Lan
    Lirong Fu
    Xiuhuan Mao
    Meng Zhang
    Signal, Image and Video Processing, 2023, 17 : 2277 - 2285
  • [34] Application of improved BP algorithm based on numerical optimization to image segmentation of cucumbers
    Li, Erchao
    Li, Zhanming
    Li, Wei
    Information Technology Journal, 2013, 12 (21) : 6181 - 6183
  • [35] Segmentation for brain MRI image based on the fuzzy c-means clustering algorithm
    Yin, Xi
    Li, Yimin
    Li, Feng
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1177 - 1182
  • [36] An Image Compression Algorithm based on Image Segmentation by Improved PCNN
    Duan, Yuping
    Guo, Yecai
    Wang, Shaobo
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 332 - 338
  • [37] Image segmentation algorithm based on improved ant colony algorithm
    Liu, Xumin
    Wang, Xiaojun
    Shi, Na
    Li, Cailing
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7 (03) : 433 - 441
  • [38] Brain MR Image Segmentation Based on Gaussian Filtering and Improved FCM Clustering Algorithm
    Wan, Chunyuan
    Ye, Mingquan
    Yao, Chuanwen
    Wu, Changrong
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [39] Research on MRI brain segmentation algorithm with the application in model-based EEG/MEG
    He, SJ
    Shen, XQ
    Yang, YM
    He, RJ
    Yan, WL
    IEEE TRANSACTIONS ON MAGNETICS, 2001, 37 (05) : 3741 - 3744
  • [40] An improved adaptive genetic algorithm and its application to image segmentation
    Wang, L
    Shen, TZ
    IMAGE EXTRACTION, SEGMENTATION, AND RECOGNITION, 2001, 4550 : 115 - 120