Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography

被引:0
|
作者
Tollervey, Fergus [1 ,2 ,3 ]
Rios, Manolo U. [4 ]
Zagoriy, Evgenia [1 ]
Woodruff, Jeffrey B. [4 ]
Mahamid, Julia [1 ,5 ]
机构
[1] European Mol Biol Lab EMBL, Struct & Computat Biol Unit, D-69117 Heidelberg, Germany
[2] Collaborat Joint PhD Degree EMBL, Fac Biosci, Heidelberg, Germany
[3] Heidelberg Univ, Fac Biosci, Heidelberg, Germany
[4] Univ Texas Dallas, Dept Cell Biol & Biophys, Southwestern Med Ctr, Dallas, TX 75390 USA
[5] EMBL, Cell Biol & Biophys Unit, D-69117 Heidelberg, Germany
基金
欧洲研究理事会;
关键词
GAMMA-TUBULIN; PERICENTRIOLAR MATERIAL; STRUCTURAL BASIS; MICROTUBULE NUCLEATION; ELECTRON-MICROSCOPY; CENTRIOLE; PROTEIN; DUPLICATION; CYCLE; REVEALS;
D O I
10.1016/j.devcel.2024.12.002
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells. Here, we use cryo-electron tomography to visualize centrosomes across the cell cycle in cells isolated from C. elegans embryos. We describe a pseudo-timeline of centriole assembly and identify distinct structural features in both mother and daughter centrioles. We find that centrioles and PCM microtubules differ in protofilament number (13 versus 11), which could be explained by atypical g-tubulin ring complexes with 11-fold symmetry identified at the minus ends of short PCM microtubule segments. We further characterize a porous and disordered network that forms the interconnected PCM. Thus, our work builds a three-dimensional structural atlas that helps explain how centrosomes assemble, grow, and achieve function.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Cryo-Electron Tomography and Proteomics studies of centrosomes from differentiated quiescent thymocytes
    Busselez, Johan
    Javier Chichon, Francisco
    Josefa Rodriguez, Maria
    Alpizar, Adan
    Isabelle Gharbi, Severine
    Franch, Monica
    Melero, Roberto
    Paradela, Alberto
    Carrascosa, Jose L.
    Carazo, Jose-Maria
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [2] Cryo-electron tomography of enveloped viruses
    Li, Sai
    TRENDS IN BIOCHEMICAL SCIENCES, 2022, 47 (02) : 173 - 186
  • [3] Procentriole assembly revealed by cryo-electron tomography
    Guichard, Paul
    Chretien, Denis
    Marco, Sergio
    Tassin, Anne-Marie
    EMBO JOURNAL, 2010, 29 (09): : 1565 - 1572
  • [4] Neurons as a model system for cryo-electron tomography
    Zuber, Benoit
    Lucic, Vladan
    JOURNAL OF STRUCTURAL BIOLOGY-X, 2022, 6
  • [5] New insights into the molecular architecture of neurons by cryo-electron tomography
    Petrovic, Arsen
    Do, Thanh Thao
    Fernandez-Busnadiego, Ruben
    CURRENT OPINION IN NEUROBIOLOGY, 2025, 90
  • [6] The promise and the challenges of cryo-electron tomography
    Turk, Martin
    Baumeister, Wolfgang
    FEBS LETTERS, 2020, 594 (20) : 3243 - 3261
  • [7] Cryo-Electron Tomography of Rubella Virus
    Battisti, Anthony J.
    Yoder, Joshua D.
    Plevka, Pavel
    Winkler, Dennis C.
    Prasad, Vidya Mangala
    Kuhn, Richard J.
    Frey, Teryl K.
    Steven, Alasdair C.
    Rossmann, Michael G.
    JOURNAL OF VIROLOGY, 2012, 86 (20) : 11078 - 11085
  • [8] Cryo-electron tomography of bacterial viruses
    Guerrero-Ferreira, Ricardo C.
    Wright, Elizabeth R.
    VIROLOGY, 2013, 435 (01) : 179 - 186
  • [9] Challenges and triumphs in cryo-electron tomography
    Hylton, Ryan K.
    Swulius, Matthew T.
    ISCIENCE, 2021, 24 (09)
  • [10] The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography
    Kudryashev, Misha
    Aktoudianaki, Aikaterini
    Dedoglou, Dimitrios
    Stahlberg, Henning
    Tsiotis, Georgios
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (10): : 1635 - 1642