An inertial stochastic Bregman generalized alternating direction method of multipliers for nonconvex and nonsmooth optimization

被引:0
|
作者
Liu, Longhui [1 ]
Han, Congying [1 ]
Guo, Tiande [1 ]
Liao, Shichen [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Nonconvex nonsmooth optimization; Variance-reduced gradient; Stochastic generalized ADMM; Inertial technique; Bregman distance; PROXIMAL POINT ALGORITHM; MAXIMAL MONOTONE-OPERATORS; RACHFORD SPLITTING METHOD; CONVERGENCE ANALYSIS; COMPLEXITY ANALYSIS; MINIMIZATION; APPROXIMATION; DESCENT;
D O I
10.1016/j.eswa.2025.126939
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The alternating direction method of multipliers (ADMM) is a widely employed first-order method due to its efficiency and simplicity. Nonetheless, like other splitting methods, ADMM's performance degrades substantially as the scale of the optimization problems it addresses increases. This work is devoted to studying an accelerated stochastic generalized ADMM framework with a class of variance-reduced gradient estimators for solving large-scale nonconvex nonsmooth optimization problems with linear constraints, in which we combine inertial technique and Bregman distance. Under the assumption that the objective functions are semi-algebraic which satisfies the Kurdyka-& Lstrok;ojasiewicz (KL) property, we establish the global convergence and convergence rate of the sequence generated by our proposed algorithm. Finally, numerical experiments on conducting a graph-guided fused lasso illustrates the efficiency of the proposed method.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] A Bregman stochastic method for nonconvex nonsmooth problem beyond global Lipschitz gradient continuity
    Wang, Qingsong
    Han, Deren
    OPTIMIZATION METHODS & SOFTWARE, 2023, 38 (05) : 914 - 946
  • [32] General inertial proximal stochastic variance reduction gradient for nonconvex nonsmooth optimization
    Sun, Shuya
    He, Lulu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [33] Inertial alternating direction method of multipliers for non-convex non-smooth optimization
    Hien, Le Thi Khanh
    Phan, Duy Nhat
    Gillis, Nicolas
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 247 - 285
  • [34] Alternating direction method of multipliers for nonconvex log total variation image restoration
    Zhang, Benxin
    Zhu, Guopu
    Zhu, Zhibin
    Kwong, Sam
    APPLIED MATHEMATICAL MODELLING, 2023, 114 : 338 - 359
  • [35] An alternating linearization bundle method for a class of nonconvex nonsmooth optimization problems
    Tang, Chunming
    Lv, Jinman
    Jian, Jinbao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [37] An Improvement of the Alternating Direction Method of Multipliers to Solve the Convex Optimization Problem
    Peng, Jingjing
    Wang, Zhijie
    Yu, Siting
    Tang, Zengao
    MATHEMATICS, 2025, 13 (05)
  • [38] A partial Bregman ADMM with a general relaxation factor for structured nonconvex and nonsmooth optimization
    Yin, Jianghua
    Tang, Chunming
    Jian, Jinbao
    Huang, Qiongxuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (04) : 899 - 926
  • [39] An Inertial Tseng's Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (02) : 600 - 616
  • [40] Stochastic linearized generalized alternating direction method of multipliers: Expected convergence rates and large deviation properties
    Hu, Jia
    Guo, Tiande
    Han, Congying
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2024, 34 (03) : 162 - 179