An inertial stochastic Bregman generalized alternating direction method of multipliers for nonconvex and nonsmooth optimization

被引:0
|
作者
Liu, Longhui [1 ]
Han, Congying [1 ]
Guo, Tiande [1 ]
Liao, Shichen [1 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Nonconvex nonsmooth optimization; Variance-reduced gradient; Stochastic generalized ADMM; Inertial technique; Bregman distance; PROXIMAL POINT ALGORITHM; MAXIMAL MONOTONE-OPERATORS; RACHFORD SPLITTING METHOD; CONVERGENCE ANALYSIS; COMPLEXITY ANALYSIS; MINIMIZATION; APPROXIMATION; DESCENT;
D O I
10.1016/j.eswa.2025.126939
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The alternating direction method of multipliers (ADMM) is a widely employed first-order method due to its efficiency and simplicity. Nonetheless, like other splitting methods, ADMM's performance degrades substantially as the scale of the optimization problems it addresses increases. This work is devoted to studying an accelerated stochastic generalized ADMM framework with a class of variance-reduced gradient estimators for solving large-scale nonconvex nonsmooth optimization problems with linear constraints, in which we combine inertial technique and Bregman distance. Under the assumption that the objective functions are semi-algebraic which satisfies the Kurdyka-& Lstrok;ojasiewicz (KL) property, we establish the global convergence and convergence rate of the sequence generated by our proposed algorithm. Finally, numerical experiments on conducting a graph-guided fused lasso illustrates the efficiency of the proposed method.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Xu, Jiawei
    Chao, Miantao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1757 - 1783
  • [2] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Jiawei Xu
    Miantao Chao
    Journal of Applied Mathematics and Computing, 2022, 68 : 1 - 27
  • [3] An inertial proximal alternating direction method of multipliers for nonconvex optimization
    Chao, M. T.
    Zhang, Y.
    Jian, J. B.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1199 - 1217
  • [4] Linearized Alternating Direction Method with Penalization for Nonconvex and Nonsmooth Optimization
    Wang, Yiyang
    Liu, Risheng
    Song, Xiaoliang
    Su, Zhixun
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 798 - 804
  • [5] A Bregman-style Partially Symmetric Alternating Direction Method of Multipliers for Nonconvex Multi-block Optimization
    Liu, Peng-jie
    Jian, Jin-bao
    Ma, Guo-dong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (02): : 354 - 380
  • [6] A modified inertial proximal alternating direction method of multipliers with dual-relaxed term for structured nonconvex and nonsmooth problem
    Liu, Yang
    Wang, Long
    Dang, Yazheng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [7] Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems
    Zhao, Jing
    Dong, Qiao-Li
    Rassias, Michael Th
    Wang, Fenghui
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 941 - 966
  • [8] A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
    Wang, Qingsong
    Han, Deren
    APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 66 - 87
  • [9] A stochastic alternating direction method of multipliers for non-smooth and non-convex optimization
    Bian, Fengmiao
    Liang, Jingwei
    Zhang, Xiaoqun
    INVERSE PROBLEMS, 2021, 37 (07)
  • [10] A stochastic two-step inertial Bregman proximal alternating linearized minimization algorithm for nonconvex and nonsmooth problems
    Guo, Chenzheng
    Zhao, Jing
    Dong, Qiao-Li
    NUMERICAL ALGORITHMS, 2024, 97 (01) : 51 - 100