Electronic Melting of Silicon in Nanostructures using X-ray Forbidden Bragg Reflections

被引:0
作者
Robinson, Ian [1 ,2 ]
Yang, David [1 ]
Wu, Longlong [1 ]
Kim, Hyunjung [3 ]
Ha, Sung Soo [3 ]
Choi, Sungwook [3 ]
Song, Changyong [4 ]
Hwang, Junha [4 ]
Heo, Seung-Phil [4 ]
Park, Jaeku [5 ]
Eom, Intae [5 ]
Kim, Sunam [5 ]
机构
[1] Brookhaven Natl Lab, Upton, NY 11973 USA
[2] UCL, London Ctr Nanotechnol, London WC1E 6BT, England
[3] Sogang Univ, Ctr Ultrafast Phase Transformat, Seoul, South Korea
[4] POSTECH, Dept Phys, Pohang, South Korea
[5] Pohang Accelerator Lab, PAL XFEL, Pohang, South Korea
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
Laser excitation; silicon; valence electrons; forbidden reflections; non-thermal melting; LATTICE-DYNAMICS; ULTRAFAST; TRANSITIONS; PHASE;
D O I
10.1007/s11664-025-11781-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We carried out a short beamtime at the Pohang Accelerator Laboratory x-ray Free Electron Laser to perform a pump-probe (PP) laser excitation diffraction experiment on the silicon (222) forbidden Bragg peak. To limit the x-ray penetration, we used a "device layer" silicon film wafer bonded to a silicon substrate. The sample, specially fabricated by MEMC Electronic Materials, had a Si(100) substrate bonded to a 170 nm Si(100) film rotated at 45 degrees for crystallographic isolation. A second sample was reactive-ion-etched down to 52 nm thickness. In the silicon lattice, the covalent bonds are seen exclusively at the 222 reflection. Upon laser excitation, these electrons are expected to be excited to the valence band on femtosecond electronic time scales. The Si(222) reflection is therefore expected to be extinguished on this fast time scale, while the electron-phonon coupled acoustic response is determined by the lattice dynamics. The latter is determined by the speed of sound over the device thickness, which is in the mid-picosecond range.
引用
收藏
页码:5051 / 5057
页数:7
相关论文
共 21 条
  • [1] Ichikawa H., Nozawa S., Sato T., Tomita A., Ichiyanagi K., Chollet M., Guerin L., Dean N., Cavalleri A., Adachi S., Arima T., Sawa H., Ogimoto Y., Nakamura M., Tamaki R., Miyano K., Koshihara S., Transient photoinduced ‘hidden’ phase in a manganite, Nat Matls, 10, (2011)
  • [2] Uteza O., Gamaly E., Rode A., Samoc M., Luther-Davies B., PRB, 70, (2004)
  • [3] Hu W., Kaiser S., Nicoletti D., Hunt C.R., Gierz I., Hoffmann M.C., Le Tacon M., Loew T., Keimer B., Cavalleri A., Optically enhanced coherent transport in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>6.5</sub> by ultrafast redistribution of interlayer coupling, Nat. Matls, 13, 7, (2014)
  • [4] Abbey B., Dilanian R.A., Darmanin C., Ryan R.A., Putkunz C.T., Martin A.V., Wood D., Streltsov V., Jones M.W.M., Gaffney N., Hofmann F., Williams G.J., Boutet S., Messerschmidt M., Seibert M.M., Williams S., Curwood E., Balaur E., Peele A., Nugent K.A., Quiney H., X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene, Sci. Adv, 2, (2016)
  • [5] Anisimov S.I., Kapeliovich B.L., Perelman T.L., Landau L.D., Electron emission from metal surfaces exposed to ultrashort laser pulses, Soviet J. Exp. Theor. Phys, 39, pp. 375-377, (1974)
  • [6] Giret Y., Naruse N., Daraszewicz S.L., Murooka Y., Yang J., Duffy D.M., Shluger A.L., Tanimura K., Determination of transient atomic structure of laser-excited materials from time- resolved diffraction data, Appl. Phys. Lett, 103, (2013)
  • [7] Clark J.N., Beitra L., Xiong G., Higginbotham A., Fritz D.M., Lemke H.T., Zhu D., Chollet M., Williams G.J., Messerschmidt M., Abbey B., Harder R.J., Korsunsky A.M., Wark J.S., Robinson I.K., Ultrafast three dimensional imaging of lattice dynamics in gold nanocrystals, Science, 341, (2013)
  • [8] Rousse A., Rischel C., Fourmaux S., Uschmann I., Sebban S., Grillon G., Balcou P., Forster E., Geindre J.P., Audebert P., Gauthier J.C., Hulin D., Non-thermal melting in semiconductors measured at femtosecond resolution, Nature, 410, (2001)
  • [9] Recoules V., Clerouin J., Zerah G., Anglade P.M., Mazevet S., Effect of intense laser irradiation on the lattice stability of semiconductors and metals, Phys. Rev. Lett, 96, (2006)
  • [10] Ernstorfer R., Harb M., Hebeisen C.T., Sciaini G., Dartigalongue T., Miller R.J.D., The formation of warm dense matter: experimental evidence for electronic bond hardening in gold, Science, 323, (2009)