Equivalent packing diameter of bidisperse spheres

被引:0
|
作者
Zhang, Shixuan [1 ]
Li, Shuixiang [1 ,2 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Bidisperse sphere; Superellipsoid; Equivalent packing diameter; Packing density; Specific volume; RANDOM CLOSE PACKING; BINARY-MIXTURES; POROSITY; SIMULATION; SIZE; PARTICLES; DENSITY; MODEL;
D O I
10.1016/j.powtec.2024.120597
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The equivalent packing diameter (De) is the key parameter to evaluate the relative packing size of non-spherical particles to spheres. In this work, we extend the concept of De to bidisperse spheres. We generate mixtures of monodisperse and bidisperse spheres via the Lubachevsky-Stillinger algorithm, and determine the De for bidisperse spheres by minimizing the packing density of mixtures. We verify the linear superposition state of the specific volume (the reciprocal of packing density) of the mixtures under De, and propose an empirical formula to estimate the De of bidisperse spheres. We further verify that mixtures of two species of bidisperse spheres with equal De manifest the linear superposition state, as well as bidisperse spheres and non-spherical particles having the same De,which indicates that non-spherical particles can be mutually equivalent to bidisperse spheres in the sense of packing density.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Open packing of spheres
    Melmore, S
    NATURE, 1942, 149 : 669 - 669
  • [32] RANDOM PACKING OF SPHERES
    RIDGWAY, K
    TARBUCK, KJ
    BRITISH CHEMICAL ENGINEERING, 1967, 12 (03): : 384 - &
  • [33] THE VISCOSITY OF SEMIDILUTE, BIDISPERSE SUSPENSIONS OF HARD-SPHERES
    WOUTERSEN, ATJM
    DEKRUIF, CG
    JOURNAL OF RHEOLOGY, 1993, 37 (04) : 681 - 693
  • [34] Simulation of hindered settling in bidisperse suspensions of rigid spheres
    Höfler, Kai
    Schwarzer, Stefan
    Wachmann, Bernd
    Computer Physics Communications, 1999, 121 : 268 - 269
  • [35] Simulation of hindered settling in bidisperse suspensions of rigid spheres
    Höfler, K
    Schwarzer, S
    Wachmann, B
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 121 : 268 - 269
  • [36] Numerical simulation of bidisperse hard spheres settling in a fluid
    Koo, Sangkyun
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 28 (02) : 364 - 369
  • [37] Numerical simulation of bidisperse hard spheres settling in a fluid
    Sangkyun Koo
    Korean Journal of Chemical Engineering, 2011, 28 : 364 - 369
  • [38] MULTIPLE PACKING AND COVERING OF SPHERES
    FEJESTOTH, G
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (1-2): : 165 - 176
  • [39] DENSEST PACKING OF EQUAL SPHERES
    MELMORE, S
    NATURE, 1947, 159 (4050) : 817 - 817
  • [40] LATTICE TRIPLE PACKING OF SPHERES
    PURDY, GB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A815 - A816