共 44 条
Research on the Performance and Application of High-Performance PE Composite Modified Asphalt
被引:1
作者:
Xia, Lei
[1
,2
]
Su, Qidong
[3
]
Yang, Xiaolong
[4
]
Lin, Shixi
[4
]
Wang, Haoran
[4
]
Hou, Rongguo
[3
]
Cao, Dongwei
[1
,2
,3
]
机构:
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710061, Peoples R China
[2] China Rd Transportat Verificat & Inspect Hitech Co, Beijing 100088, Peoples R China
[3] Minist Transport, Res Inst Highway, Beijing 100088, Peoples R China
[4] Cangzhou Qugang Expressway Construct Co Ltd, Cangzhou 062450, Peoples R China
来源:
关键词:
PE composite modified asphalt;
storage stability;
anti-aging performance;
microscopic properties;
RHEOLOGICAL PROPERTIES;
POLYMER;
RESISTANCE;
STABILITY;
BINDERS;
SBS;
D O I:
10.3390/polym17030346
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
The large-scale production of waste plastics has brought serious environmental pollution problems and its recycling and high value-added utilization technology remains a global challenge. Therefore, this study uses waste polyethylene (PE) to prepare high-performance polyethylene composite modified asphalt (HPEA), solving the problem of poor stability and low temperature performance of traditional plastic modified asphalt, while achieving high value-added utilization of waste plastics. A high-performance polyethylene composite modifier (HPE) was prepared through mechanochemical and thermochemical interactions. Then HPEA with different HPE content and styrene-butadiene-styrene (SBS) modified asphalt (SBSMA) with different SBS content were prepared. Compare and analyze the conventional performance, storage stability, anti-aging performance and microscopic properties of HPEA and SBSMA. The results are as follows: (1) the conventional performance of HPEA is comparable to, or superior to, that of SBSMA. The addition of HPE resulted in a significant decrease in asphalt penetration. The modification effect achieved by adding 3-5% SBS to Kunlun 70# asphalt is equivalent to that achieved by incorporating 4-6% HPE. (2) HEPA exhibits good storage stability and no obvious segregation phenomenon. When the HPE content changes from 4% to 8%, the maximum difference in 48 h softening point of HPEA is 1.1 degrees C, which is significantly smaller than the 48 h softening point difference of SBSMA when the SBS content changes from 3% to 5%. (3) When HPE attains a specific concentration, HPEA can exhibit an anti-aging performance that is comparable to, or superior to, that of SBSMA. (4) The infrared spectrum of HPEA closely resembles that of SK70# matrix asphalt. The modification of HPEA primarily involves physical blending, with HPE undergoing development and re-crosslinking within the system, leading to interactions between smaller particles and asphalt, resulting in the formation of a relatively stable three-dimensional spatial structure.
引用
收藏
页数:15
相关论文