Neural SHAKE: Geometric Constraints in Graph Generative Models

被引:0
|
作者
Diamond, Justin [1 ,2 ]
Lill, Markus A. [1 ,2 ]
机构
[1] Univ Basel, Dept Pharmaceut Sci, Basel, Switzerland
[2] SIB Swiss Inst Bioinformat, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Diffusion; Constraints; Molecular Generation;
D O I
10.1007/978-3-031-72359-9_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generating accurate molecular conformations requires efficient sampling from the global space of atomic arrangements, which grows exponentially with the number of degrees of freedom. Incorporating prior information about geometric patterns, such as distances, angles, and dihedrals, is crucial for ensuring the accurate physical characteristics of molecules by increasing the likelihood of sampling low-energy conformations. These geometric patterns often translate into non-linear constraint satisfaction problems. We propose an innovative approach to integrate these constraints into neural differential equations using the denoising diffusion framework. By projecting the dynamics onto constrained subspaces, our method enables the generation of molecular conformations that adhere to strict geometric constraint, in contrast to similar research based on probabilistic guidance that acts as a soft prior. This technique not only enhances molecular generation methods by producing lower energy structures and more relevant conformations by sampling from subspaces but also formally generalizes classifier guidance.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 50 条
  • [41] Disentangling Geometric Deformation Spaces in Generative Latent Shape Models
    Aumentado-Armstrong, Tristan
    Tsogkas, Stavros
    Dickinson, Sven
    Jepson, Allan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (07) : 1611 - 1641
  • [42] θ-SHAKE: An extension to SHAKE for the explicit treatment of angular constraints
    Gonnet, Pedro
    Walther, Jens H.
    Koumoutsakos, Petros
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (03) : 360 - 364
  • [43] ENHANCED SIMULATION METAMODELING VIA GRAPH AND GENERATIVE NEURAL NETWORKS
    Cen, Wang
    Haas, Peter J.
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 2748 - 2759
  • [44] Human neural tube morphogenesis in vitro by geometric constraints
    Karzbrun, Eyal
    Khankhel, Aimal H.
    Megale, Heitor C.
    Glasauer, Stella M. K.
    Wyle, Yofiel
    Britton, George
    Warmflash, Aryeh
    Kosik, Kenneth S.
    Siggia, Eric D.
    Shraiman, Boris, I
    Streichan, Sebastian J.
    NATURE, 2021, 599 (7884) : 268 - 272
  • [45] Human neural tube morphogenesis in vitro by geometric constraints
    Eyal Karzbrun
    Aimal H. Khankhel
    Heitor C. Megale
    Stella M. K. Glasauer
    Yofiel Wyle
    George Britton
    Aryeh Warmflash
    Kenneth S. Kosik
    Eric D. Siggia
    Boris I. Shraiman
    Sebastian J. Streichan
    Nature, 2021, 599 : 268 - 272
  • [46] Orthogonality and graph divergence losses promote disentanglement in generative models
    Shukla, Ankita
    Dadhich, Rishi
    Singh, Rajhans
    Rayas, Anirudh
    Saidi, Pouria
    Dasarathy, Gautam
    Berisha, Visar
    Turaga, Pavan
    FRONTIERS IN COMPUTER SCIENCE, 2024, 6
  • [47] GRAPH NEURAL REACTION DIFFUSION MODELS
    Eliasof, Moshe
    Haber, Eldad
    Treister, Eran
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (04): : C399 - C420
  • [48] Scalable and exact sampling method for probabilistic generative graph models
    Sebastian Moreno
    Joseph J. Pfeiffer
    Jennifer Neville
    Data Mining and Knowledge Discovery, 2018, 32 : 1561 - 1596
  • [49] How to Turn Your Knowledge Graph Embeddings into Generative Models
    Loconte, Lorenzo
    Di Mauro, Nicola
    Peharz, Robert
    Vergari, Antonio
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [50] Scalable and exact sampling method for probabilistic generative graph models
    Moreno, Sebastian
    Pfeiffer, Joseph J., III
    Neville, Jennifer
    DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (06) : 1561 - 1596