Stain-adaptive self-supervised learning for histopathology image analysis

被引:1
|
作者
Ye, Haili [1 ]
Yang, Yuan-yuan [2 ]
Zhu, Shunzhi [1 ]
Wang, Da-Han [1 ]
Zhang, Xu-Yao [3 ,4 ]
Yang, Xin [5 ]
Huang, Heguang [2 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Fujian Key Lab Pattern Recognit & Image Understand, Xiamen 361024, Fujian, Peoples R China
[2] Fujian Med Univ, Union Hosp, Dept Gen Surg, 29 Xinquan Rd, Fuzhou 350001, Fujian, Peoples R China
[3] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[5] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan 430000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Histopathology image analysis; Domain adaptation; Stain adaptation; Self-supervised learning; Domain adversarial training; DOMAIN ADAPTATION;
D O I
10.1016/j.patcog.2024.111242
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Staining variability is a critical factor affecting the accuracy of histopathological image analysis by reducing the distinguishability of tissue regions. Existing methods employ preprocessing techniques such as color matching and stain transfer for stain normalization, which can compromise data features. We propose a novel Stain-Adaptive Self-Supervised Learning (SASSL) method for histopathological image analysis. Our SASSL integrates a stain domain adversarial training module into the self-supervised learning (SSL) framework, allowing adaptation to staining variations while learning invariant features. SASSL can be viewed as a general invariant representation SSL method, with derived self-supervised weights applicable to various downstream tasks (classification, regression, and segmentation) in histopathological images. We conducted experiments on publicly available histopathological image analysis datasets, including PANDA, BreastPathQ, and CAMELYON16, achieving state-of-the-art performance. Results demonstrate that SASSL enhances feature extraction and mitigates the impact of staining variability, consistently improving performance across tasks. Our code is available at https://github.com/YeahHighly/SASSL_PR_2024.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Self-supervised learning for CT image denoising and reconstruction: a review
    Choi, Kihwan
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (06) : 1207 - 1220
  • [42] Adaptive Self-Supervised SAR Image Registration With Modifications of Alignment Transformation
    Mao, Shasha
    Yang, Jinyuan
    Gou, Shuiping
    Lu, Kai
    Jiao, Licheng
    Xiong, Tao
    Xiong, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [43] EXPLORING SELF-SUPERVISED REPRESENTATION LEARNING FOR LOW-RESOURCE MEDICAL IMAGE ANALYSIS
    Chattopadhyay, Soumitri
    Ganguly, Soham
    Chaudhury, Sreejit
    Nag, Sayan
    Chattopadhyay, Samiran
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1440 - 1444
  • [44] Self-Supervised Learning for Recommendation
    Huang, Chao
    Xia, Lianghao
    Wang, Xiang
    He, Xiangnan
    Yin, Dawei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 5136 - 5139
  • [45] DOMAIN ADAPTING ABILITY OF SELF-SUPERVISED LEARNING FOR FACE RECOGNITION
    Lin, Chun-Hsieh
    Wu, Bing-Fei
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 479 - 483
  • [46] Longitudinal self-supervised learning
    Zhao, Qingyu
    Liu, Zixuan
    Adeli, Ehsan
    Pohl, Kilian M.
    MEDICAL IMAGE ANALYSIS, 2021, 71
  • [47] Self-supervised Learning as a Means to Reduce the Need for Labeled Data in Medical Image Analysis
    Bencevic, Marin
    Habijan, Marija
    Galic, Irena
    Pizurica, Aleksandra
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1328 - 1332
  • [48] Quantum self-supervised learning
    Jaderberg, B.
    Anderson, L. W.
    Xie, W.
    Albanie, S.
    Kiffner, M.
    Jaksch, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (03):
  • [49] Self-Supervised Hypergraph Representation Learning for Sociological Analysis
    Sun, Xiangguo
    Cheng, Hong
    Liu, Bo
    Li, Jia
    Chen, Hongyang
    Xu, Guandong
    Yin, Hongzhi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11860 - 11871
  • [50] Adaptive Memory Networks With Self-Supervised Learning for Unsupervised Anomaly Detection
    Zhang, Yuxin
    Wang, Jindong
    Chen, Yiqiang
    Yu, Han
    Qin, Tao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (12) : 12068 - 12080