A Fast and Accurate Method for Estimating Lightning Overvoltage Probability Distributions on Overhead Transmission Lines

被引:0
作者
da Cunha Coelho, Alex Junior [1 ]
Ribeiro de Moura, Rodolfo Antonio [1 ]
de Assis, Fernando Aparecido [1 ]
de Oliveira Schroeder, Marco Aurelio [1 ]
Ribeiro, Moises Vidal [2 ]
机构
[1] Univ Fed Sao Joao del Rei, Elect Engn Dept, Sao Joao Del Rei, Brazil
[2] Univ Fed Juiz de Fora, Elect Engn Dept, Juiz De Fora, Brazil
来源
18TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, PMAPS 2024 | 2024年
关键词
Lightning overvoltage; method of moments; Monte Carlo; overhead transmission line; Unscented Transform; IMPEDANCE;
D O I
10.1109/PMAPS61648.2024.10667175
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Assessing overvoltage due to lightning interactions with transmission lines is essential for the reliability of electric power systems. In this sense, the probability distribution of maximum lightning overvoltage is typically estimated considering the stochastic nature of lightning. This paper focuses on this problem by introducing a method offering reduced computational time and more flexibility. To do so, the proposed methodology effectively combines a modified version of the Unscented Transform method and probability density function reconstruction techniques based on Pearson and Johnson systems. Numerical results show that it estimates the probability density functions of maximum lightning overvoltage with considerable accuracy and reduced computational time. Also, they show that combining the Unscented Transform method and Pearson and Johnson systems is effective for reconstructing the probability density function of the maximum lightning overvoltage. As a result, the proposal emerges as a strong contender to replace the traditional methods in this context.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 21 条
  • [1] [Anonymous], 1997, 12431997 IEEE, DOI [10.1109/IEEESTD.1997.84660, DOI 10.1109/IEEESTD.1997.84660]
  • [2] [Anonymous], 2021, CIGRE WG C4.23, V839
  • [3] Evaluation of Lightning Overvoltages for Overhead Transmission Lines Using Unscented Transform
    Coelho, Alex J. C.
    Moura, Rodolfo A. R.
    Assis, Fernando A.
    Schroeder, Marco Aurelio O.
    Yuan, Xinyi
    Hooshyar, Ali
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (01) : 746 - 749
  • [4] Novel algorithm for reconstruction of a distribution by fitting its first-four statistical moments
    Dang, Chao
    Xu, Jun
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 71 : 505 - 524
  • [5] Revision, extension, and validation of Jordan's formula to calculate the surge impedance of vertical conductors
    De Conti, Alberto
    Visacro, Silverio
    Soares, Amilton, Jr.
    Aurelio, Marco
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2006, 48 (03) : 530 - 536
  • [6] Efficient computation of stochastic electromagnetic problems using unscented transforms
    de Menezes, L. R. A. X.
    Ajayi, A.
    Christopoulos, C.
    Sewell, P.
    Borges, G. A.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2008, 2 (02) : 88 - 95
  • [7] Generalized Johnson Distributions and Risk Functionals
    Floros, Christos
    Gkillas, Konstantinos
    Kountzakis, Christos
    [J]. MATHEMATICS, 2022, 10 (17)
  • [8] An ATP-EMTP Monte Carlo procedure for backflashover rate evaluation: A comparison with the CIGRE method
    Gatta, F. M.
    Geri, A.
    Lauria, S.
    Maccioni, M.
    Santarpia, A.
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2014, 113 : 134 - 140
  • [9] Modeling guidelines for fast front transients
    Imece, AF
    Durbak, DW
    Elahi, H
    Kolluri, S
    Lux, A
    Mader, D
    McDermott, TE
    Morched, A
    Mousa, AM
    Natarajan, R
    Rugeles, L
    Tarasiewicz, E
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 1996, 11 (01) : 493 - 506
  • [10] JOHNSON NL, 1949, BIOMETRIKA, V36, P149, DOI 10.1093/biomet/36.1-2.149