Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery

被引:1
|
作者
Schlickmann, Monique Bohora [1 ]
Bueno, Inacio Thomaz [1 ]
Valle, Denis [2 ]
Hammond, William M. [3 ]
Prichard, Susan J. [4 ]
Hudak, Andrew T. [5 ]
Klauberg, Carine [1 ]
Karasinski, Mauro Alessandro [6 ]
Brock, Kody Melissa [1 ]
Rocha, Kleydson Diego [7 ]
Xia, Jinyi [1 ]
Vieira Leite, Rodrigo [8 ]
Higuchi, Pedro [9 ]
da Silva, Ana Carolina [9 ]
Maximo da Silva, Gabriel [1 ]
Cova, Gina R. [4 ]
Silva, Carlos Alberto [1 ]
机构
[1] Univ Florida, Sch Forest Fisheries & Geomat Sci, Forest Biometr Remote Sensing & Artificial Intelli, Silva Lab, POB 110410, Gainesville, FL 32611 USA
[2] Univ Florida, Sch Forest, Remote Sensing Lab, Quantitat Ecol Conservat & Remote Sensing Lab Vall, POB 110410, Gainesville, FL 32611 USA
[3] Univ Florida, Agron Dept, Plant Ecophysiol Lab, Ecophys Lab, Gainesville, FL 32611 USA
[4] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA
[5] USDA, Forest Serv, Rocky Mt Res Stn, Moscow, ID 83843 USA
[6] Univ Fed Parana, BIOFIX Res Ctr, Dept Forest Engn, BR-80210170 Curitiba, Brazil
[7] Univ Florida, Sch Forest Fisheries & Geomat Sci, Global Forest Dynam Lab, Gainesville, FL 32611 USA
[8] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[9] Santa Catarina State Univ, Forest Engn Dept, Av Luiz de Camoes,2090 Conta Dinheiro, BR-88520000 Lages, Brazil
基金
美国食品与农业研究所;
关键词
data fusion; forest structure estimation; GEDI data; machine learning models; southern forests; ABOVEGROUND BIOMASS; VEGETATION INDEX; AIRBORNE LIDAR; REMOTE; LANDSAT; SATELLITE; CLIMATE; GROWTH; BRAZIL;
D O I
10.3390/rs17020320
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Southern U.S. forests are essential for carbon storage and timber production but are increasingly impacted by natural disturbances, highlighting the need to understand their dynamics and recovery. Canopy cover is a key indicator of forest health and resilience. Advances in remote sensing, such as NASA's GEDI spaceborne LiDAR, enable more precise mapping of canopy cover. Although GEDI provides accurate data, its limited spatial coverage restricts large-scale assessments. To address this, we combined GEDI with Synthetic Aperture Radar (SAR), and optical imagery (Sentinel-1 GRD and Landsat-Sentinel Harmonized (HLS)) data to create a comprehensive canopy cover map for Florida. Using a random forest algorithm, our model achieved an R2 of 0.69, RMSD of 0.17, and MD of 0.001, based on out-of-bag samples for internal validation. Geographic coordinates and the red spectral channel emerged as the most influential predictors. External validation with airborne laser scanning (ALS) data across three sites yielded an R2 of 0.70, RMSD of 0.29, and MD of -0.22, confirming the model's accuracy and robustness in unseen areas. Statewide analysis showed lower canopy cover in southern versus northern Florida, with wetland forests exhibiting higher cover than upland sites. This study demonstrates the potential of integrating multiple remote sensing datasets to produce accurate vegetation maps, supporting forest management and sustainability efforts in Florida.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Improving Forest Canopy Height Mapping in Wuyishan National Park Through Calibration of ZiYuan-3 Stereo Imagery Using Limited Unmanned Aerial Vehicle LiDAR Data
    Jian, Kai
    Lu, Dengsheng
    Lu, Yagang
    Li, Guiying
    FORESTS, 2025, 16 (01):
  • [32] Monitoring of Land Degradation from Overgrazing using Spaceborne Radar and Optical Imagery: case study in Randi Forest, Cyprus
    Papoutsa, C.
    Kouhartsiouk, D.
    Themistocleous, K.
    Christoforou, M.
    Hadjimitsis, D. G.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VII, 2016, 10005
  • [33] Model-Based Estimation of Forest Canopy Height and Biomass in the Canadian Boreal Forest Using Radar, LiDAR, and Optical Remote Sensing
    Benson, Michael L.
    Pierce, Leland
    Bergen, Kathleen
    Sarabandi, Kamal
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 4635 - 4653
  • [34] Mapping wetlands in Nova Scotia with multi-beam RADARSAT-2 Polarimetric SAR, optical satellite imagery, and Lidar data
    Jahncke, Raymond
    Leblon, Brigitte
    Bush, Peter
    LaRocque, Armand
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 68 : 139 - 156
  • [35] Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest
    Karlson, Martin
    Ostwald, Madelene
    Reese, Heather
    Sanou, Josias
    Tankoano, Boalidioa
    Mattsson, Eskil
    REMOTE SENSING, 2015, 7 (08) : 10017 - 10041
  • [36] Forest Emissions Reduction Assessment Using Optical Satellite Imagery and Space LiDAR Fusion for Carbon Stock Estimation
    Jiao, Yue
    Wang, Dacheng
    Yao, Xiaojing
    Wang, Shudong
    Chi, Tianhe
    Meng, Yu
    REMOTE SENSING, 2023, 15 (05)
  • [37] Estimation of Forest Leaf Area Index Using Height and Canopy Cover Information Extracted From Unmanned Aerial Vehicle Stereo Imagery
    Zhang, Dafeng
    Liu, Jianli
    Ni, Wenjian
    Sun, Guoqing
    Zhang, Zhiyu
    Liu, Qinhuo
    Wang, Qiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (02) : 471 - 481
  • [38] Monthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning
    Zhao, Feng
    Sun, Rui
    Zhong, Liheng
    Meng, Ran
    Huang, Chengquan
    Zeng, Xiaoxi
    Wang, Mengyu
    Li, Yaxin
    Wang, Ziyang
    REMOTE SENSING OF ENVIRONMENT, 2022, 269
  • [39] High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data
    Li, Wang
    Niu, Zheng
    Shang, Rong
    Qin, Yuchu
    Wang, Li
    Chen, Hanyue
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 92
  • [40] Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR Data: Application on French Guiana
    Fayad, Ibrahim
    Baghdadi, Nicolas
    Bailly, Jean-Stephane
    Barbier, Nicolas
    Gond, Valery
    Herault, Bruno
    El Hajj, Mahmoud
    Fabre, Frederic
    Perrin, Jose
    REMOTE SENSING, 2016, 8 (03)