Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery

被引:1
|
作者
Schlickmann, Monique Bohora [1 ]
Bueno, Inacio Thomaz [1 ]
Valle, Denis [2 ]
Hammond, William M. [3 ]
Prichard, Susan J. [4 ]
Hudak, Andrew T. [5 ]
Klauberg, Carine [1 ]
Karasinski, Mauro Alessandro [6 ]
Brock, Kody Melissa [1 ]
Rocha, Kleydson Diego [7 ]
Xia, Jinyi [1 ]
Vieira Leite, Rodrigo [8 ]
Higuchi, Pedro [9 ]
da Silva, Ana Carolina [9 ]
Maximo da Silva, Gabriel [1 ]
Cova, Gina R. [4 ]
Silva, Carlos Alberto [1 ]
机构
[1] Univ Florida, Sch Forest Fisheries & Geomat Sci, Forest Biometr Remote Sensing & Artificial Intelli, Silva Lab, POB 110410, Gainesville, FL 32611 USA
[2] Univ Florida, Sch Forest, Remote Sensing Lab, Quantitat Ecol Conservat & Remote Sensing Lab Vall, POB 110410, Gainesville, FL 32611 USA
[3] Univ Florida, Agron Dept, Plant Ecophysiol Lab, Ecophys Lab, Gainesville, FL 32611 USA
[4] Univ Washington, Sch Environm & Forest Sci, Seattle, WA 98195 USA
[5] USDA, Forest Serv, Rocky Mt Res Stn, Moscow, ID 83843 USA
[6] Univ Fed Parana, BIOFIX Res Ctr, Dept Forest Engn, BR-80210170 Curitiba, Brazil
[7] Univ Florida, Sch Forest Fisheries & Geomat Sci, Global Forest Dynam Lab, Gainesville, FL 32611 USA
[8] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[9] Santa Catarina State Univ, Forest Engn Dept, Av Luiz de Camoes,2090 Conta Dinheiro, BR-88520000 Lages, Brazil
基金
美国食品与农业研究所;
关键词
data fusion; forest structure estimation; GEDI data; machine learning models; southern forests; ABOVEGROUND BIOMASS; VEGETATION INDEX; AIRBORNE LIDAR; REMOTE; LANDSAT; SATELLITE; CLIMATE; GROWTH; BRAZIL;
D O I
10.3390/rs17020320
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Southern U.S. forests are essential for carbon storage and timber production but are increasingly impacted by natural disturbances, highlighting the need to understand their dynamics and recovery. Canopy cover is a key indicator of forest health and resilience. Advances in remote sensing, such as NASA's GEDI spaceborne LiDAR, enable more precise mapping of canopy cover. Although GEDI provides accurate data, its limited spatial coverage restricts large-scale assessments. To address this, we combined GEDI with Synthetic Aperture Radar (SAR), and optical imagery (Sentinel-1 GRD and Landsat-Sentinel Harmonized (HLS)) data to create a comprehensive canopy cover map for Florida. Using a random forest algorithm, our model achieved an R2 of 0.69, RMSD of 0.17, and MD of 0.001, based on out-of-bag samples for internal validation. Geographic coordinates and the red spectral channel emerged as the most influential predictors. External validation with airborne laser scanning (ALS) data across three sites yielded an R2 of 0.70, RMSD of 0.29, and MD of -0.22, confirming the model's accuracy and robustness in unseen areas. Statewide analysis showed lower canopy cover in southern versus northern Florida, with wetland forests exhibiting higher cover than upland sites. This study demonstrates the potential of integrating multiple remote sensing datasets to produce accurate vegetation maps, supporting forest management and sustainability efforts in Florida.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa
    Laurin, Gaia Vaglio
    Liesenberg, Veraldo
    Chen, Qi
    Guerriero, Leila
    Del Frate, Fabio
    Bartolini, Antonio
    Coomes, David
    Wilebore, Beccy
    Lindsell, Jeremy
    Valentini, Riccardo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 21 : 7 - 16
  • [22] Mangrove changes over the past decade in South and Southeast Brazil using spaceborne optical and SAR imagery
    Lopes, Joao Paulo N.
    Nascimento Jr, Wilson R.
    Diniz, Cesar G.
    Souza-Filho, Pedro Walfir M.
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2023, 95
  • [23] COMBINATION OF GENETIC ALGORITHM AND DEMPSTER-SHAFER THEORY OF EVIDENCE FOR LAND COVER CLASSIFICATION USING INTEGRATION OF SAR AND OPTICAL SATELLITE IMAGERY
    Chu, H. T.
    Ge, L.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 173 - 178
  • [24] Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots
    Matasci, Giona
    Hermosilla, Txomin
    Wulder, Michael A.
    White, Joanne C.
    Coops, Nicholas C.
    Hobart, Geordie W.
    Zald, Harold S. J.
    REMOTE SENSING OF ENVIRONMENT, 2018, 209 : 90 - 106
  • [25] Tropical forest canopy height estimation from combined polarimetric SAR and LiDAR using machine-learning
    Pourshamsi, Maryam
    Xia, Junshi
    Yokoya, Naoto
    Garcia, Mariano
    Lavalle, Marco
    Pottier, Eric
    Balzter, Heiko
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 79 - 94
  • [26] Mapping Three-Dimensional Structures of Forest Canopy Using UAV Stereo Imagery: Evaluating Impacts of Forward Overlaps and Image Resolutions With LiDAR Data as Reference
    Ni, Wenjian
    Sun, Guoqing
    Pang, Yong
    Zhang, Zhiyu
    Liu, Jianli
    Yang, Aqiang
    Wang, Yao
    Zhang, Dafeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3578 - 3589
  • [27] Submerged and Emergent Land Cover and Bathymetric Mapping of Estuarine Habitats Using WorldView-2 and LiDAR Imagery
    Halls, Joanne
    Costin, Kaitlyn
    REMOTE SENSING, 2016, 8 (09)
  • [28] Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico
    Mikhail Urbazaev
    Christian Thiel
    Felix Cremer
    Ralph Dubayah
    Mirco Migliavacca
    Markus Reichstein
    Christiane Schmullius
    Carbon Balance and Management, 13
  • [29] Comparison of Random Forest and XGBoost Classifiers Using Integrated Optical and SAR Features for Mapping Urban Impervious Surface
    Shao, Zhenfeng
    Ahmad, Muhammad Nasar
    Javed, Akib
    REMOTE SENSING, 2024, 16 (04)
  • [30] Modeling Canopy Height of Forest-Savanna Mosaics in Togo Using ICESat-2 and GEDI Spaceborne LiDAR and Multisource Satellite Data
    Kombate, Arifou
    Kamga, Guy Armel Fotso
    Goita, Kalifa
    REMOTE SENSING, 2025, 17 (01)