A strong limit theorem of the largest entries of sample correlation matrices under a φ-mixing assumption

被引:0
|
作者
Zhao, Haozhu [1 ]
Zhang, Yong [2 ]
机构
[1] Changchun Univ Sci & Technol, Sch Math & Stat, Changchun 130022, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Subject sample correlation matrices; phi-mixing sequence; Chen-Stein method; ASYMPTOTIC-DISTRIBUTION; DISTRIBUTIONS; COHERENCE;
D O I
10.2298/FIL2419957Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {X-k,X-i;k >= 1,i >= 1}be an array of random variables,{X-k;k >= 1}be a strictly stationary phi-mixing sequence, where X-k=(X-k,X-1,X-k,X-2,<middle dot><middle dot><middle dot>,X-k,p). Let{pn;n >= 1}be a sequence of positive integers such that 0<c(1 )<= p(n)/n(tau) <= c(2)<infinity, where tau >0,c(2 )>= c(1)>0. In this paper, we obtain a strong limit the-orem of L-n = max(1 <= i<j <= pn)|rho(i j)|, where rho(i j) denotes the Pearson correlation coefficient between X(i) and X(j),X(i)=(X-1,i,X-2,i,<middle dot><middle dot><middle dot>,X-n,X-i)'. The strong limit theorem is derived by using Chen-Stein Poisson approximation method
引用
收藏
页码:6957 / 6977
页数:21
相关论文
共 10 条