Classification of traveling wave solutions of the modified Zakharov-Kuznetsov equation

被引:0
|
作者
Pan-Collantes, Antonio J. [1 ]
Muriel, C. [1 ,2 ]
Ruiz, A. [1 ]
机构
[1] Univ Cadiz, Fac Ciencias, Dept Quim Fis, Campus Univ Puerto Real S-N, Puerto Real 11510, Cadiz, Spain
[2] Int Soc Nonlinear Math Phys ISNMP, Hardt 27, D-56130 Bad Ems, Germany
关键词
C infinity-structure; Traveling wave solutions; Zakharov-Kuznetsov equation; Integrable systems; SYMMETRIES; REDUCTION;
D O I
10.1016/j.chaos.2025.116091
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The C infinity-structure-based method of integration of distributions of vector fields is used to classify all the traveling wave solutions of the modified Zakharov-Kuznetsov equation. This work unifies and generalizes the particular results obtained in the recent literature by using specific ansatz-based methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Solitons and other solutions to the quantum Zakharov-Kuznetsov equation
    Ghodrat Ebadi
    Aida Mojaver
    Daniela Milovic
    Stephen Johnson
    Anjan Biswas
    Astrophysics and Space Science, 2012, 341 : 507 - 513
  • [42] Lie symmetry analysis and some exact solutions for modified Zakharov-Kuznetsov equation
    Zhou, Xuan
    Shan, Wenrui
    Niu, Zhilei
    Xiao, Pengcheng
    Wang, Ying
    MODERN PHYSICS LETTERS B, 2018, 32 (31):
  • [43] A novel approach for solitary wave solutions of the generalized fractional Zakharov-Kuznetsov equation
    Fiza Batool
    Ghazala Akram
    Indian Journal of Physics, 2018, 92 : 111 - 119
  • [44] Construction of periodic wave soliton solutions for the nonlinear Zakharov-Kuznetsov modified equal width dynamical equation
    Alshehery, Sultan
    Iqbal, Mujahid
    Seadawy, Aly R.
    Umurzakhova, Zhanar
    Myrzakulov, Ratbay
    Az-Zo'bi, Emad A.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (08)
  • [45] Travelling wave-like solutions of the Zakharov-Kuznetsov equation with variable coefficients
    Peng, Yan-Ze
    Krishnan, E. V.
    Feng, Hui
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (01): : 49 - 55
  • [46] Travelling wave-like solutions of the Zakharov-Kuznetsov equation with variable coefficients
    Yan-Ze Peng
    E. V. Krishnan
    Hui Feng
    Pramana, 2008, 71
  • [47] A novel approach for solitary wave solutions of the generalized fractional Zakharov-Kuznetsov equation
    Batool, F.
    Akram, G.
    INDIAN JOURNAL OF PHYSICS, 2018, 92 (01) : 111 - 119
  • [48] Solitons and other solutions to the quantum Zakharov-Kuznetsov equation
    Ebadi, Ghodrat
    Mojaver, Aida
    Milovic, Daniela
    Johnson, Stephen
    Biswas, Anjan
    ASTROPHYSICS AND SPACE SCIENCE, 2012, 341 (02) : 507 - 513
  • [49] Traveling waves of delayed Zakharov-Kuznetsov Kuramoto-Sivashinsky equation
    Ge, Jianjiang
    Wu, Ranchao
    WAVE MOTION, 2024, 125
  • [50] Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity
    Osman, M. S.
    Rezazadeh, Hadi
    Eslami, Mostafa
    NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2019, 8 (01): : 559 - 567