Effect of Active MgO on Compensated Drying Shrinkage and Mechanical Properties of Alkali-Activated Fly Ash-Slag Materials

被引:0
|
作者
Ma, Hongqiang [1 ,2 ,3 ]
Li, Shiru [1 ]
Lei, Zelong [1 ]
Wu, Jialong [1 ]
Yuan, Xinhua [1 ]
Niu, Xiaoyan [1 ,2 ,3 ]
机构
[1] Hebei Univ, Coll Civil Engn & Architecture, Baoding 071002, Peoples R China
[2] Hebei Univ, Engn Res Ctr Zero Carbon Energy Bldg & Measurement, Minist Educ, Baoding 071002, Peoples R China
[3] Hebei Univ, Technol Innovat Ctr Testing & Evaluat Civil Engn H, Baoding 071002, Peoples R China
关键词
alkali-activated materials; MgO activity; drying shrinkage; mechanical properties; microstructure; CONCRETE PAVEMENT; EXPANSION AGENT; TEMPERATURE; RESISTANCE; HYDRATION; STRENGTH; BINDERS;
D O I
10.3390/buildings15020256
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The influences of MgO activity and its content on the mechanical properties, drying shrinkage compensation, pore structure, and microstructure of alkali-activated fly ash-slag materials were investigated. Active MgO effectively compensated for the alkali-activated materials' (AAMs') drying shrinkage. The drying shrinkage increased rapidly with the increase in curing age and stabilized after 28 d. Within a certain range, the material's drying shrinkage was inversely proportional to the content of active MgO. The higher the activity of MgO, the lower the drying shrinkage of the AAMs under the same MgO content. The drying shrinkage values of the test groups with 9% R-MgO, M-MgO, and S-MgO at 90 d were 2444 mu epsilon, 2306 mu epsilon, and 2156 mu epsilon, respectively. In the early stage of hydration, the addition of S-MgO reduced the compressive strength. As the content of M-MgO increased, the compressive strength first increased and then decreased, reaching a maximum of 72.28 MPa at an M-MgO content of 9%. The experimental group with 9% M-MgO exhibited higher compressive and flexural strengths than those with 9% S-MgO and R-MgO, demonstrating better mechanical properties. The results of this study provide an important theoretical basis and data support for the optimal application of MgO in AAMs. MgO expansion agents have great application potential in low-carbon buildings and durable materials. Further research on their adaptability in complex environments will promote their development for engineering and provide innovative support for green buildings.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste
    Jin, Fei
    Gu, Kai
    Al-Tabbaa, Abir
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 51 : 395 - 404
  • [22] Understanding the synergetic effect of SAP and nano-silica on the mechanical properties, drying shrinkage and microstructures of alkali-activated slag/fly ash-based concrete
    Xia, Dongtao
    Song, Nana
    Li, Biao
    Zheng, Yi
    Guo, Wenyuan
    Wu, Jiani
    Wang, Songbo
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 455
  • [23] Effect of fly ash and gypsum on drying shrinkage and mechanical properties of one-part alkali-activated slag mortar
    Chen, Haiming
    Zhang, Yadong
    Chen, Jie
    Qin, Ziguang
    Wu, Peng
    STRUCTURAL CONCRETE, 2024,
  • [24] Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer
    Tu, Wenlin
    Zhu, Yu
    Fang, Guohao
    Wang, Xingang
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2019, 116 : 179 - 190
  • [25] Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete
    Li, Zhenming
    Lu, Tianshi
    Chen, Yun
    Wu, Bei
    Ye, Guang
    CEMENT & CONCRETE COMPOSITES, 2021, 117
  • [26] Study on Shrinkage in Alkali-Activated Slag-Fly Ash Cementitious Materials
    Cui, Peng
    Wan, Yuanyuan
    Shao, Xuejun
    Ling, Xinyu
    Zhao, Long
    Gong, Yongfan
    Zhu, Chenhui
    MATERIALS, 2023, 16 (11)
  • [27] Effect of polyether shrinkage reducing admixture on the drying shrinkage properties of alkali-activated slag
    Zhang, Wenyan
    Xue, Mengfen
    Lin, Huaxia
    Duan, Xiaohang
    Jin, Yuzhong
    Su, Faqiang
    CEMENT & CONCRETE COMPOSITES, 2023, 136
  • [28] Multiscale micromechanical analysis of alkali-activated fly ash-slag paste
    Fang, Guohao
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2020, 135
  • [29] Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete
    Mosleh, Youssef A.
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 65 - 76
  • [30] Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature
    Fang, Guohao
    Ho, Wing Kei
    Tu, Wenlin
    Zhang, Mingzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 172 : 476 - 487