Effect of Active MgO on Compensated Drying Shrinkage and Mechanical Properties of Alkali-Activated Fly Ash-Slag Materials

被引:0
|
作者
Ma, Hongqiang [1 ,2 ,3 ]
Li, Shiru [1 ]
Lei, Zelong [1 ]
Wu, Jialong [1 ]
Yuan, Xinhua [1 ]
Niu, Xiaoyan [1 ,2 ,3 ]
机构
[1] Hebei Univ, Coll Civil Engn & Architecture, Baoding 071002, Peoples R China
[2] Hebei Univ, Engn Res Ctr Zero Carbon Energy Bldg & Measurement, Minist Educ, Baoding 071002, Peoples R China
[3] Hebei Univ, Technol Innovat Ctr Testing & Evaluat Civil Engn H, Baoding 071002, Peoples R China
关键词
alkali-activated materials; MgO activity; drying shrinkage; mechanical properties; microstructure; CONCRETE PAVEMENT; EXPANSION AGENT; TEMPERATURE; RESISTANCE; HYDRATION; STRENGTH; BINDERS;
D O I
10.3390/buildings15020256
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The influences of MgO activity and its content on the mechanical properties, drying shrinkage compensation, pore structure, and microstructure of alkali-activated fly ash-slag materials were investigated. Active MgO effectively compensated for the alkali-activated materials' (AAMs') drying shrinkage. The drying shrinkage increased rapidly with the increase in curing age and stabilized after 28 d. Within a certain range, the material's drying shrinkage was inversely proportional to the content of active MgO. The higher the activity of MgO, the lower the drying shrinkage of the AAMs under the same MgO content. The drying shrinkage values of the test groups with 9% R-MgO, M-MgO, and S-MgO at 90 d were 2444 mu epsilon, 2306 mu epsilon, and 2156 mu epsilon, respectively. In the early stage of hydration, the addition of S-MgO reduced the compressive strength. As the content of M-MgO increased, the compressive strength first increased and then decreased, reaching a maximum of 72.28 MPa at an M-MgO content of 9%. The experimental group with 9% M-MgO exhibited higher compressive and flexural strengths than those with 9% S-MgO and R-MgO, demonstrating better mechanical properties. The results of this study provide an important theoretical basis and data support for the optimal application of MgO in AAMs. MgO expansion agents have great application potential in low-carbon buildings and durable materials. Further research on their adaptability in complex environments will promote their development for engineering and provide innovative support for green buildings.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Study on the characteristics of alkali-activated fly ash-slag improved by cenosphere: Hydration and drying shrinkage
    Ma, Hongqiang
    Fu, Congcong
    Huang, Kang
    Dai, Enyang
    Zhang, Shaochen
    Fang, Youliang
    Feng, Jingjing
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 372
  • [2] Effect of active MgO on the hydration kinetics characteristics and microstructures of alkali-activated fly ash-slag materials
    Ma, Hongqiang
    Li, Xiaomeng
    Zheng, Xuan
    Niu, Xiaoyan
    Fang, Youliang
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 361
  • [3] Shrinkage and strength development of alkali-activated fly ash-slag binary cements
    Hojati, Maryam
    Radlinska, Aleksandra
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 150 : 808 - 816
  • [4] Drying shrinkage of alkali-activated fly ash/slag blended system
    Wang, Guisheng
    Ma, Yuwei
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2018, 7 (04) : 203 - 213
  • [5] Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag
    Huang, Dunwen
    Yuan, Qiaoming
    Chen, Peng
    Tian, Xiang
    Peng, Hui
    JOURNAL OF BUILDING ENGINEERING, 2022, 62
  • [6] Study on optimization of mixing ratio and shrinkage property of alkali-activated ultrafine fly ash-slag mortar
    Wang, Jun
    Wang, Haofan
    Li, Zhaoxi
    Yan, Jun
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [7] Effect of Fly Ash, MgO and Curing Solution on the Chemical Shrinkage of Alkali-Activated Slag Cement
    Fang, Yonghao
    Gu, Yamin
    Kang, Qiuboa
    ADVANCES IN BUILDING MATERIALS, PTS 1-3, 2011, 168-170 : 2008 - 2012
  • [8] Study of the Mechanical Properties and Microstructure of Alkali-Activated Fly Ash-Slag Composite Cementitious Materials
    Lv, Yigang
    Wang, Cui
    Han, Weiwei
    Li, Xing
    Peng, Hui
    POLYMERS, 2023, 15 (08)
  • [9] Shrinkage mitigation of alkali-activated fly ash/slag mortar by using phosphogypsum waste
    Zheng, Yong
    Xuan, Dongxing
    Shen, Bo
    Ma, Kejian
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 375
  • [10] Behaviour of alkali-activated fly ash-slag paste at elevated temperatures: An experimental study
    Tu, Wenlin
    Fang, Guohao
    Dong, Biqin
    Hu, Yukun
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2024, 147