Automatic Machine Learning Framework to Study Morphological Parameters of AGN Host Galaxies within z < 1.4 in the Hyper Supreme-Cam Wide Survey

被引:0
|
作者
Tian, Chuan [1 ]
Urry, C. Megan [1 ,2 ,3 ]
Ghosh, Aritra [2 ,4 ,5 ]
Nagai, Daisuke [1 ,2 ,3 ]
Ananna, Tonima T. [6 ]
Powell, Meredith C. [7 ]
Auge, Connor [8 ]
Mishra, Aayush [9 ]
Sanders, David B. [8 ]
Cappelluti, Nico [10 ,11 ]
Schawinski, Kevin [12 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Yale Univ, Dept Astron, New Haven, CT USA
[3] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT USA
[4] UNIV WASHINGTON, DiRAC Inst, Seattle, WA USA
[5] Univ Washington, Dept Astron, Seattle, WA USA
[6] Wayne State Univ, Dept Phys & Astron, Wilder Hall,17 Fayerweather Hill Rd, Hanover, NH USA
[7] Leibniz Inst Astrophys Potsdam AIP, An Sternwarte 16, D-14482 Potsdam, Germany
[8] Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA
[9] Indian Inst Sci Educ & Res, Thiruvananthapuram, India
[10] Univ Miami, Miami, FL USA
[11] INAF Osservatorio Astrofis & Sci Spazio Bologna, Bologna, Italy
[12] Modulos AG, Zurich, Switzerland
基金
美国国家科学基金会;
关键词
SUPERMASSIVE BLACK-HOLES; AXIS-RATIO DISTRIBUTION; ACTIVE GALACTIC NUCLEI; STAR-FORMATION; NEURAL-NETWORKS; CATALOG; MERGER; QUASAR; DECOMPOSITIONS; CLASSIFICATION;
D O I
10.3847/1538-4357/adaec0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a composite machine learning framework to estimate posterior probability distributions of bulge-to-total light ratio, half-light radius, and flux for active galactic nucleus (AGN) host galaxies within z < 1.4 and m < 23 in the Hyper Supreme-Cam (HSC) Wide survey. We divide the data into five redshift bins: low (0 < z < 0.25), mid (0.25 < z < 0.5), high (0.5 < z < 0.9), extra (0.9 < z < 1.1), and extreme (1.1 < z < 1.4), and train our models independently in each bin. We use PSFGAN to decompose the AGN point-source light from its host galaxy, and invoke the Galaxy Morphology Posterior Estimation Network (GaMPEN) to estimate morphological parameters of the recovered host galaxy. We first trained our models on simulated data, and then fine-tuned our algorithm via transfer learning using labeled real data. To create training labels for transfer learning, we used GALFIT to fit similar to 20,000 real HSC galaxies in each redshift bin. We comprehensively examined that the predicted values from our final models agree well with the GALFIT values for the vast majority of cases. Our PSFGAN + GaMPEN framework runs at least three orders of magnitude faster than traditional light-profile fitting methods, and can be easily retrained for other morphological parameters or on other data sets with diverse ranges of resolutions, seeing conditions, and signal-to-noise ratios, making it an ideal tool for analyzing AGN host galaxies from large surveys coming soon from the Rubin-LSST, Euclid, and Roman telescopes.
引用
收藏
页数:24
相关论文
共 1 条
  • [1] Using Machine Learning to Determine Morphologies of z &lt; 1 AGN Host Galaxies in the Hyper Suprime-Cam Wide Survey
    Tian, Chuan
    Urry, C. Megan
    Ghosh, Aritra
    Ofman, Ryan
    Ananna, Tonima Tasnim
    Auge, Connor
    Cappelluti, Nico
    Powell, Meredith C.
    Sanders, David B.
    Schawinski, Kevin
    Stark, Dominic
    Tremblay, Grant R.
    ASTROPHYSICAL JOURNAL, 2023, 944 (02)