UNIQUE CONTINUATION PROPERTIES FROM ONE TIME FOR HYPERBOLIC SCHRODINGER EQUATIONS

被引:0
作者
Barcelo, Juan A. [1 ]
Cassano, Biagio [2 ]
Fanelli, Luca [3 ]
机构
[1] Univ Politecn Madrid, ETSI Caminos, Calle Prof Aranguren 3, E-28040 Madrid, Spain
[2] Univ Campania L Vanvitelli, Dipartimento Matemat Fis, I-81100 Caserta, Italy
[3] IKERBASQUE Basque Fdn Sci, Basque Ctr Appl Math BCAM, Bilbao 48009, Spain
关键词
hyperbolic Schro; dinger equation; uncertainty principle; Carleman inequalities; magnetic potentials; HARDY UNCERTAINTY PRINCIPLE; CONVEXITY;
D O I
10.1137/23M1578218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate properties of unique continuation for hyperbolic Schro"\dinger equations with time-dependent complex-valued electric fields and time-independent real magnetic fields. We show that positive masses inside of a bounded region at a single time propagate outside the region and prove gaussian lower bounds for the solutions, provided a suitable average in space-time cylinders is taken.
引用
收藏
页码:7417 / 7438
页数:22
相关论文
共 31 条
[1]  
AGIRRE M., VEGA L., Some lower bounds for solutions of Schrödinger evolutions, SIAM J. Math. Anal, 51, pp. 3324-3336, (2019)
[2]  
BARCELO J. A., CASSANO B., FANELLI L., Mass propagation for electromagnetic Schrödinger evolutions, Nonlinear Anal, 217, (2022)
[3]  
BARCELO J. A., FANELLI L., GUTIERREZ S., RUIZ A., VILELA M. C., Hardy uncertainty principle and unique continuation properties of covariant Schrodinger flows, J. Funct. Anal, 264, pp. 2386-2415, (2013)
[4]  
BONAMI A., DEMANGE B., A survey on uncertainty principles related to quadratic forms, Collect. Math., Extra, pp. 1-36, (2006)
[5]  
CASSANO B., FANELLI L., Sharp hardy uncertainty principle and Gaussian profiles of covariant Schrödinger evolutions, Trans. Amer. Math. Soc, 367, pp. 2213-2233, (2015)
[6]  
CASSANO B., FANELLI L., Gaussian decay of harmonic oscillators and related models, J. Math. Anal. Appl, 456, pp. 214-228, (2017)
[7]  
COWLING M., ESCAURIAZA L., KENIG C., PONCE G., VEGA L., The Hardy uncertainty principle revisited, Indiana Univ. Math. J, 59, pp. 2007-2026, (2010)
[8]  
COWLING M., PRICE J. F., Generalisations of Heisenberg's inequality, Lecture Notes in Math, 992, pp. 443-449, (1983)
[9]  
ESCAURIAZA L., KENIG C., PONCE G., VEGA L., On uniqueness properties of solutions of Schrödinger equations, Comm. PDE, 31, pp. 1811-1823, (2006)
[10]  
ESCAURIAZA L., KENIG C., PONCE G., VEGA L., Convexity properties of solutions to the free Schrödinger equation with Gaussian decay, Math. Res. Lett, 15, pp. 957-971, (2008)