Bounded-Error LiDAR Compression for Bandwidth-Efficient Cloud-Edge In-Vehicle Data Transmission

被引:0
作者
Chang, Ray-, I [1 ]
Hsu, Ting-Wei [1 ]
Yang, Chih [1 ]
Chen, Yen-Ting [1 ]
机构
[1] Natl Taiwan Univ, Dept Engn Sci & Ocean Engn, Taipei 10617, Taiwan
来源
ELECTRONICS | 2025年 / 14卷 / 05期
关键词
LiDAR; data compression; bounded-error; EB-HC; EB-HC-3D; EB-3D; Huffman coding; in-vehicle networks; edge/cloud computing;
D O I
10.3390/electronics14050908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent advances in autonomous driving have led to an increased use of LiDAR (Light Detection and Ranging) sensors for high-frequency 3D perceptions, resulting in massive data volumes that challenge in-vehicle networks, storage systems, and cloud-edge communications. To address this issue, we propose a bounded-error LiDAR compression framework that enforces a user-defined maximum coordinate deviation (e.g., 2 cm) in the real-world space. Our method combines multiple compression strategies in both axis-wise metric Axis or Euclidean metric L2 (namely, Error-Bounded Huffman Coding (EB-HC), Error-Bounded 3D Compression (EB-3D), and the extended Error-Bounded Huffman Coding with 3D Integration (EB-HC-3D)) with a lossless Huffman coding baseline. By quantizing and grouping point coordinates based on a strict threshold (either axis-wise or Euclidean), our method significantly reduces data size while preserving the geometric fidelity. Experiments on the KITTI dataset demonstrate that, under a 2 cm bounded-error, our single-bin compression reduces the data to 25-35% of their original size, while multi-bin processing can further compress the data to 15-25% of their original volume. An analysis of compression ratios, error metrics, and encoding/decoding speeds shows that our method achieves a substantial data reduction while keeping reconstruction errors within the specified limit. Moreover, runtime profiling indicates that our method is well-suited for deployment on in-vehicle edge devices, thereby enabling scalable cloud-edge cooperation.
引用
收藏
页数:21
相关论文
共 35 条
[21]   Frame-Level Rate Control for Geometry-Based LiDAR Point Cloud Compression [J].
Li, Li ;
Li, Zhu ;
Liu, Shan ;
Li, Houqiang .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :3855-3867
[22]   Lossless progressive compression of LiDAR data using hierarchical grid level distribution [J].
Lipus, Bogdan ;
Zalik, Borut .
REMOTE SENSING LETTERS, 2015, 6 (03) :190-198
[23]   Error Analysis-Based Map Compression for Efficient 3-D Lidar Localization [J].
Liu, Ying ;
Tao, Junyi ;
He, Bin ;
Zhang, Yu ;
Dai, Weichen .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (10) :10323-10332
[24]   A Perspective on Ethernet in Automotive Communications-Current Status and Future Trends [J].
Lo Bello, Lucia ;
Patti, Gaetano ;
Leonardi, Luca .
APPLIED SCIENCES-BASEL, 2023, 13 (03)
[25]  
Mahajan N., Technical Report
[26]   Occupancy Networks: Learning 3D Reconstruction in Function Space [J].
Mescheder, Lars ;
Oechsle, Michael ;
Niemeyer, Michael ;
Nowozin, Sebastian ;
Geiger, Andreas .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4455-4465
[27]   Efficient method for lossless LIDAR data compression [J].
Mongus, Domen ;
Zalik, Borut .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (09) :2507-2518
[28]  
Sun X., 2023, P EDBT IOANN GREEC M, P378
[29]  
Tu CX, 2019, IEEE INT CONF ROBOT, P3274, DOI [10.1109/ICRA.2019.8794264, 10.1109/icra.2019.8794264]
[30]   Hybrid Point Cloud Semantic Compression for Automotive Sensors: A Performance Evaluation [J].
Varischio, Andrea ;
Mandruzzato, Francesco ;
Bullo, Marcello ;
Giordani, Marco ;
Testolina, Paolo ;
Zorzi, Michele .
IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,