SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries

被引:0
|
作者
Strand, Aleksander Theo [1 ]
Gautam, Sushant [2 ]
Midoglu, Cise [3 ]
Halvorsen, Pal [4 ]
机构
[1] TET Digital AS, OsloMet, Oslo, Norway
[2] SimulaMet, OsloMet, Oslo, Norway
[3] SimulaMet, Forzasys, Oslo, Norway
[4] SimulaMet, OsloMet, Forzasys, Oslo, Norway
来源
2024 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI | 2024年
关键词
association football; information retrieval; large language models; multimodal data fusion; natural language processing; sports;
D O I
10.1109/CBMI62980.2024.10859209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. In this paper, we introduce SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. Our evaluations indicate that SoccerRAG effectively handles complex queries, offering significant improvements over traditional retrieval systems in terms of accuracy and user engagement. The results underscore the potential of using RAG and LLMs in sports analytics, paving the way for future advancements in the accessibility and real-time processing of sports data.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [21] Learning to Choose the Best System Configuration in Information Retrieval: the Case of Repeated Queries
    Bigot, Anthony
    Dejean, Sebastien
    Mothe, Josiane
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2015, 21 (13) : 1726 - 1745
  • [22] Enhancing Clinical Information Retrieval through Context-Aware Queries and Indices
    Wen, Andrew
    Wang, Yanshan
    Kaggal, Vinod C.
    Liu, Sijia
    Liu, Hongfang
    Fan, Jungwei
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2800 - 2807
  • [23] Learning Web Queries for Retrieval of Relevant Information about an Entity in a Wikipedia Category
    Yadav, Vikrant
    Kumar, Sandeep
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), 2016, : 1013 - 1014
  • [24] Performance Evaluation of Information Retrieval Schemes for Multi-Attribute Queries in DTNs
    Chuah, M.
    Han, J.
    2008 IEEE MILITARY COMMUNICATIONS CONFERENCE: MILCOM 2008, VOLS 1-7, 2008, : 2020 - 2026
  • [25] Query expansion with a medical ontology to improve a multimodal information retrieval system
    Diaz-Galiano, M. C.
    Martin-Valdivia, M. T.
    Urena-Lopez, L. A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (04) : 396 - 403
  • [26] An Intelligent Information Retrieval System Through Natural Language Prompts for Private Database
    Mushsharat, Mostafa
    Palit, Rajesh
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [27] Using concept hierarchies to enhance user queries in web-based information retrieval
    Sieg, A
    Mobasher, B
    Lytinen, S
    Burke, R
    Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Vols 1and 2, 2004, : 153 - 159
  • [28] Searching for Cancer Information on the Internet: Analyzing Natural Language Search Queries
    Bader, Judith L.
    Theofanos, Mary Frances
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2003, 5 (04)
  • [29] Information retrieval in falktales using natural language processing
    Groza, Adrian
    Corde, Lidia
    2015 IEEE 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP), 2015, : 59 - 66
  • [30] Unsupervised Large Language Model Alignment for Information Retrieval via Contrastive Feedback
    Dong, Qian
    Liu, Yiding
    Ai, Qingyao
    Wu, Zhijing
    Li, Haitao
    Liu, Yiqun
    Wang, Shuaiqiang
    Yin, Dawei
    Ma, Shaoping
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 48 - 58