SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries

被引:0
|
作者
Strand, Aleksander Theo [1 ]
Gautam, Sushant [2 ]
Midoglu, Cise [3 ]
Halvorsen, Pal [4 ]
机构
[1] TET Digital AS, OsloMet, Oslo, Norway
[2] SimulaMet, OsloMet, Oslo, Norway
[3] SimulaMet, Forzasys, Oslo, Norway
[4] SimulaMet, OsloMet, Forzasys, Oslo, Norway
来源
2024 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI | 2024年
关键词
association football; information retrieval; large language models; multimodal data fusion; natural language processing; sports;
D O I
10.1109/CBMI62980.2024.10859209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. In this paper, we introduce SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. Our evaluations indicate that SoccerRAG effectively handles complex queries, offering significant improvements over traditional retrieval systems in terms of accuracy and user engagement. The results underscore the potential of using RAG and LLMs in sports analytics, paving the way for future advancements in the accessibility and real-time processing of sports data.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [11] Dynamic Multimodal Instance Segmentation Guided by Natural Language Queries
    Margffoy-Tuay, Edgar
    Perez, Juan C.
    Botero, Emilio
    Arbelaez, Pablo
    COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 656 - 672
  • [12] Method of enriching queries by contextual information to approve of information retrieval system in Arabic
    Mallat, Souheyl
    Abdellaoui, Houssem
    Maraoui, Mohsen
    Zrigui, Mounir
    2015 5TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND ACCESSIBILITY (ICTA), 2015,
  • [13] Information retrieval on the Web: Improving relevancy by disambiguating user queries
    Dwivedi, Sanjay Kumar
    Proceedings of the IASTED International Conference on Advances in Computer Science and Technology, 2006, : 13 - 18
  • [14] Semantic queries in BPMN 2.0: a contemporary method for Information Retrieval
    Kalogeraki, Eleni-Maria
    Panayiotopoulos, Themis
    Apostolou, Dimitris
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA), 2015,
  • [15] Multiple Queries of Information Retrieval using Krylov Subspace Method
    Lin, Youzuo
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 531 - 538
  • [16] Learning to Rank for Information Retrieval and Natural Language Processing
    Li H.
    Synthesis Lectures on Human Language Technologies, 2011, 4 (01): : 1 - 115
  • [17] Development of Multimodal Resources for Multilingual Information Retrieval in the Basque context
    Barroso, N.
    Ezeiza, A.
    Gilisagasti, N.
    de Ipina, Lopez K.
    Lopez, A.
    Lopez, J. M.
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 2033 - 2036
  • [19] Learning to Rank for Information Retrieval and Natural Language Processing, Second Edition
    Huawei Technologies, China
    Synth. Lect. Human Lang. Technol., 3 (1-123): : 1 - 123
  • [20] Positive attitudes and failed queries: an exploration of the conundrums of consumer health information retrieval
    Zeng, QT
    Kogan, S
    Plovnick, RM
    Crowell, J
    Lacroix, EM
    Greenes, RA
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2004, 73 (01) : 45 - 55