SoccerRAG: Multimodal Soccer Information Retrieval via Natural Queries

被引:0
|
作者
Strand, Aleksander Theo [1 ]
Gautam, Sushant [2 ]
Midoglu, Cise [3 ]
Halvorsen, Pal [4 ]
机构
[1] TET Digital AS, OsloMet, Oslo, Norway
[2] SimulaMet, OsloMet, Oslo, Norway
[3] SimulaMet, Forzasys, Oslo, Norway
[4] SimulaMet, OsloMet, Forzasys, Oslo, Norway
来源
2024 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI | 2024年
关键词
association football; information retrieval; large language models; multimodal data fusion; natural language processing; sports;
D O I
10.1109/CBMI62980.2024.10859209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid evolution of digital sports media necessitates sophisticated information retrieval systems that can efficiently parse extensive multimodal datasets. In this paper, we introduce SoccerRAG, an innovative framework designed to harness the power of Retrieval Augmented Generation (RAG) and Large Language Models (LLMs) to extract soccer-related information through natural language queries. By leveraging a multimodal dataset, SoccerRAG supports dynamic querying and automatic data validation, enhancing user interaction and accessibility to sports archives. Our evaluations indicate that SoccerRAG effectively handles complex queries, offering significant improvements over traditional retrieval systems in terms of accuracy and user engagement. The results underscore the potential of using RAG and LLMs in sports analytics, paving the way for future advancements in the accessibility and real-time processing of sports data.
引用
收藏
页码:86 / 92
页数:7
相关论文
共 50 条
  • [1] Demo: Soccer Information Retrieval via Natural Queries using SoccerRAG
    Strand, Aleksander Theo
    Gautam, Sushant
    Midoglu, Cise
    Halvorsen, Pal
    2024 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI, 2024, : 362 - 366
  • [2] Reusing past queries to facilitate information retrieval
    Hubert, Gilles
    Mothe, Josiane
    ICSOFT 2007: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES, VOL ISDM/WSEHST/DC, 2007, : 166 - 171
  • [3] Detecting verbose queries and improving information retrieval
    Di Buccio, Emanuele
    Melucci, Massimo
    Moro, Federica
    INFORMATION PROCESSING & MANAGEMENT, 2014, 50 (02) : 342 - 360
  • [4] A concept of bipolar queries in textual information retrieval
    Zadrozny, Slawomir
    Kacprzyk, Janusz
    De Tre, Guy
    2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 3, 2009, : 175 - +
  • [5] Exploiting syntactic analysis of queries for information retrieval
    Mittendorfer, M
    Winiwarter, W
    DATA & KNOWLEDGE ENGINEERING, 2002, 42 (03) : 315 - 325
  • [6] Deep Multimodal Learning for Information Retrieval
    Ji, Wei
    Wei, Yinwei
    Zheng, Zhedong
    Fei, Hao
    Chua, Tat-Seng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 9739 - 9741
  • [7] Bipolar queries in textual information retrieval: A new perspective
    Zadrozny, Slawomir
    Kacprzyk, Janusz
    De Tre, Guy
    INFORMATION PROCESSING & MANAGEMENT, 2012, 48 (03) : 390 - 398
  • [8] The Query of Everything: Developing Open-Domain, Natural-Language Queries for BOLT Information Retrieval
    Griffitt, Kira
    Strassel, Stephanie
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 3741 - 3747
  • [9] Application of Natural Language Processing for Information Retrieval
    Xi, Su Mei
    Lee, Dae Jong
    Cho, Young Im
    PROCEEDINGS OF THE EIGHTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 18TH '13), 2013, : 621 - 624
  • [10] Application of Natural Language Processing in Information Retrieval
    Rojas, Yenory
    Ferrandez, Antonio
    Peral, Jesus
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2005, (34):