Dispersive and Strichartz Estimates for Schrödinger Equation with One Aharonov-Bohm Solenoid in a Uniform Magnetic Field

被引:2
作者
Wang, Haoran [1 ]
Zhang, Fang [1 ]
Zhang, Junyong [1 ]
机构
[1] Beijing Inst Technol, Dept Math, Beijing 100081, Peoples R China
来源
ANNALES HENRI POINCARE | 2025年 / 26卷 / 08期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SCHRODINGER-OPERATORS; POTENTIALS; WAVE; DECAY;
D O I
10.1007/s00023-024-01500-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain dispersive and Strichartz estimates for solutions to the Schr & ouml;dinger equation with one Aharonov-Bohm solenoid in the uniform magnetic field. The main step of the proof is the construction of the Schr & ouml;dinger kernel, and the main obstacle is to obtain the explicit representation of the kernel, which requires a large set of careful calculations. To overcome this obstacle, we plan to construct the Schr & ouml;dinger kernel by two different strategies. The first one is to use the Poisson summation formula as Fanelli et al. (Adv Math 400:108333, 2022), while the second one relies on the Schulman-Sunada formula in & Scaron;t'ov & iacute;& ccaron;ek (Ann Phys 376:254-282, 2017), which reveals the intrinsic connections of the heat kernels on manifolds with group actions.
引用
收藏
页码:3029 / 3054
页数:26
相关论文
共 42 条
[1]   On the Aharonov-Bohm Hamiltonian [J].
Adami, R ;
Teta, A .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (01) :43-53
[2]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[3]  
Andrews GE., 2001, SPECIAL FUNCTIONS EN
[4]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[5]   SEPARATION OF CENTER OF MASS IN HOMOGENEOUS MAGNETIC-FIELDS [J].
AVRON, JE ;
HERBST, IW ;
SIMON, B .
ANNALS OF PHYSICS, 1978, 114 (1-2) :431-451
[6]   SCHRODINGER-OPERATORS WITH MAGNETIC-FIELDS .3. ATOMS IN HOMOGENEOUS MAGNETIC-FIELD [J].
AVRON, JE ;
HERBST, IW ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (04) :529-572
[7]   The Landau Hamiltonian with δ-potentials supported on curves [J].
Behrndt, Jussi ;
Exner, Pavel ;
Holzmann, Markus ;
Lotoreichik, Vladimir .
REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (04)
[8]  
Burq N, 2004, INDIANA U MATH J, V53, P1665
[9]   Strichartz estimates for the wave and Schrodinger equations with the inverse-square potential [J].
Burq, N ;
Planchon, F ;
Stalker, JG ;
Tahvildar-Zadeh, AS .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (02) :519-549
[10]   Dispersive estimates for the Dirac equation in an Aharonov-Bohm field [J].
Cacciafesta, F. ;
Fanelli, L. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :4382-4399