共 100 条
[1]
Adoko A.C., Gokceoglu C., Wu L., Zuo Q., Knowledge-based and data-driven fuzzy modeling for rockburst prediction, Int. J. Rock Mech. Min. Sci., 61, pp. 86-95, (2013)
[2]
Ahmad M., Hu J.L., Hadzima-Nyarko M., Ahmad F., Tang X., Rahman Z., Nawaz A., Abrar M., Rockburst hazard prediction in underground projects using two intelligent classification techniques: a comparative study, Symmetry, 13, (2021)
[3]
Ahmad M., Katman H.Y., Al-Mansob R.A., Ahmad F., Safdar M., Alguno A.C., Prediction of rockburst intensity grade in deep underground excavation using adaptive boosting classifier, Complexity, 2022, pp. 1-10, (2022)
[4]
Chen B., Feng X., Ming H., Zhou H., Zeng X., Feng G., Xiao Y., Evolution law and mechanism of rockburst in deep tunnel: time delayed rockburst. Chinese Journal of Rock mechanics and Engineering, Chin. J. Rock Mech. Eng., 31, pp. 561-569, (2012)
[5]
Chen H., Li N., Nie D., Shang Y., A model for prediction of rockburst by artificial neural network, Chin. J. Geotech. Eng., 24, pp. 229-232, (2002)
[6]
Chen S., Wu A., Wang Y., Xu M., Prediction of rockburst intensity based on decision tree model, J. Wuhan Univ. Sci. Technol. (Soc. Sci. Ed.), 39, pp. 195-199, (2016)
[7]
Cook N.G.W., A note on rockburst considered as a problem of stability, J. South. Afr. Inst. Min. Metall., 65, pp. 437-446, (1965)
[8]
Di Y., Wang E., Li Z., Liu X., Huang T., Yao J., Comprehensive early warning method of microseismic, acoustic emission, and electromagnetic radiation signals of rock burst based on deep learning, Int. J. Rock Mech. Min. Sci., 170, (2023)
[9]
Dong L., Li X., Kang P., Prediction of rockburst classification using Random Forest, Trans. Nonferrous Metals Soc. China, 23, pp. 472-477, (2013)
[10]
Dong L., Wesseloo J., Potvin Y., Li X., Discrimination of mine seismic events and blasts using the Fisher classifier, naive bayesian classifier and logistic regression, Rock Mech. Rock Eng., 49, pp. 183-211, (2016)