Firn seismic anisotropy in the Northeast Greenland Ice Stream from ambient-noise surface waves

被引:0
|
作者
Pearce, Emma [1 ]
Zigone, Dimitri [1 ]
Hofstede, Coen [2 ]
Fichtner, Andreas [3 ]
Rimpot, Joachim [1 ]
Rasmussen, Sune Olander [4 ]
Freitag, Johannes [2 ]
Eisen, Olaf [1 ,2 ,5 ]
机构
[1] Univ Strasbourg, CNRS, Inst Terre & Environm Strasbourg ITES, UMR7063, Strasbourg, France
[2] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
[3] Swiss Fed Inst Technol, Inst Geophys, Glaciol Dept, Zurich, Switzerland
[4] Niels Bohr Inst, Ctr Ice & Climate, Sect Phys Ice Climate & Earth, Copenhagen, Denmark
[5] Univ Bremen, Geosci Dept, D-28334 Bremen, Germany
来源
CRYOSPHERE | 2024年 / 18卷 / 10期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
WEST ANTARCTICA; TOMOGRAPHY; VELOCITY; MICROSTRUCTURE; DENSIFICATION; RESOLUTION; SCALE; INVERSION; RAYLEIGH; MODEL;
D O I
10.5194/tc-18-4917-2024
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
We analyse ambient-noise seismic data from 23 three-component seismic nodes to study firn velocity structure and seismic anisotropy near the EastGRIP camp along the Northeast Greenland Ice Stream (NEGIS). Using nine-component correlation tensors, we derive dispersion curves of Rayleigh and Love wave group velocities from 3 to 40 Hz. These velocity distributions exhibit anisotropy along and across the flow. To assess these variations, we invert dispersion curves for shear wave velocities (Vsh and Vsv) in the top 150 m of the NEGIS using a Markov chain Monte Carlo approach. The reconstructed 1-D shear velocity model reveals radial anisotropy in the firn, with Vsh 12 %-15 % greater than Vsv, peaking at the critical density (550 kg m-3). We combine density data from firn cores drilled in 2016 and 2018 to create a new density parameterisation for the NEGIS, serving as a reference for our results. We link seismic anisotropy in the NEGIS to effective and intrinsic causes. Seasonal densification, wind crusts, and melt layers induce effective anisotropy, leading to faster Vsh waves. Changes in firn recrystallisation cause intrinsic anisotropy, altering the Vsv / Vsh ratio. We observe a shallower firn-ice transition across the flow (approximate to 50 m) compared with along the flow (approximate to 60 m), suggesting increased firn compaction due to the predominant wind direction and increased deformation towards the shear margin. We demonstrate that short-duration (9 d minimum), passive, seismic deployments and noise-based analysis can determine seismic anisotropy in firn, and we reveal 2-D firn structure and variability.
引用
收藏
页码:4917 / 4932
页数:16
相关论文
共 50 条
  • [1] Ambient high-frequency seismic surface waves in the firn column of central west Antarctica
    Chaput, Julien
    Aster, Rick
    Karplus, Marianne
    Nakata, Nori
    JOURNAL OF GLACIOLOGY, 2022, 68 (270) : 785 - 798
  • [2] Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy
    Smith, Emma C.
    Baird, Alan F.
    Kendall, J. Michael
    Martin, Carlos
    White, Robert S.
    Brisbourne, Alex M.
    Smith, Andrew M.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (08) : 3710 - 3718
  • [3] Crystal orientation fabric anisotropy causes directional hardening of the Northeast Greenland Ice Stream
    Gerber, Tamara Annina
    Lilien, David A.
    Rathmann, Nicholas Mossor
    Franke, Steven
    Young, Tun Jan
    Valero-Delgado, Fernando
    Ershadi, M. Reza
    Drews, Reinhard
    Zeising, Ole
    Humbert, Angelika
    Stoll, Nicolas
    Weikusat, Ilka
    Grinsted, Aslak
    Hvidberg, Christine Schott
    Jansen, Daniela
    Miller, Heinrich
    Helm, Veit
    Steinhage, Daniel
    O'Neill, Charles
    Paden, John
    Gogineni, Siva Prasad
    Dahl-Jensen, Dorthe
    Eisen, Olaf
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] An application of a seismic nodal system with seismic ambient noise near Kunlun Station, Antarctica: estimating ice thickness and firn structure
    Chen, Yuqiao
    Yan, Peng
    Yang, Yuande
    Huang, Xueke
    Li, Fei
    EARTH AND PLANETARY PHYSICS, 2025, 9 (02) : 323 - 336
  • [5] Azimuthal anisotropy from eikonal tomography: example from ambient-noise measurements in the AlpArray network
    Kaestle, E. D.
    Molinari, I
    Boschi, L.
    Kissling, E.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 229 (01) : 151 - 170
  • [6] Refinements to the method of epicentral location based on surface waves from ambient seismic noise: introducing Love waves
    Levshin, Anatoli L.
    Barmin, Mikhail P.
    Moschetti, Morgan P.
    Mendoza, Carlos
    Ritzwoller, Michael H.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 191 (02) : 671 - 685
  • [7] Seismic Noise Interferometry and Distributed Acoustic Sensing (DAS): Inverting for the Firn Layer S-Velocity Structure on Rutford Ice Stream, Antarctica
    Zhou, Wen
    Butcher, Antony
    Brisbourne, Alex M.
    Kufner, Sofia-Katerina
    Kendall, J-Michael
    Stork, Anna L.
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2022, 127 (12)
  • [8] Retrieving surface waves from ambient seismic noise using seismic interferometry by multidimensional deconvolution
    van Dalen, Karel N.
    Mikesell, T. Dylan
    Ruigrok, Elmer N.
    Wapenaar, Kees
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (02) : 944 - 961
  • [9] Recovery of P Waves from Ambient-Noise Interferometry of Borehole Seismic Data around the San Andreas Fault in Central California
    Mosher, Stephen Glenn
    Audet, Pascal
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2018, 108 (01) : 51 - 65
  • [10] CC-FJpy: A Python']Python Package for Extracting Overtone Surface-Wave Dispersion from Seismic Ambient-Noise Cross Correlation
    Li, Zhengbo
    Zhou, Jie
    Wu, Gaoxiong
    Wang, Jiannan
    Zhang, Gongheng
    Dong, Sheng
    Pan, Lei
    Yang, Zhentao
    Gao, Lina
    Ma, Qingbo
    Ren, Hengxin
    Chen, Xiaofei
    SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (05) : 3179 - 3186