A Graph-Transformer Network for Scene Text Detection

被引:0
|
作者
Wu, Yongrong [1 ]
Lin, Jingyu [1 ]
Chen, Houjin [1 ]
Chen, Dinghao [1 ]
Yang, Lvqing [1 ]
Xiahou, Jianbing [2 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361000, Peoples R China
[2] Quanzhou Normal Univ, Quanzhou 362000, Fujian, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V | 2023年 / 14090卷
关键词
Scene Text Detection; Transformer; Graph convolutional network;
D O I
10.1007/978-981-99-4761-4_57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting text in natural images with varying orientations and shapes is challenging. Existing detectors often fail with text instances having extreme aspect ratios. This paper introduces GTNet, a Graph- Transformer network for scene text detection. GTNet uses a Graph-based Shared Feature Learning Module (GSFL) for feature extraction and a Transformer-based Regression Module (TRM) for bounding box prediction. Our architecture offers a flexible receptive field, combining global attention and local features for enhanced text representation. Extensive experiments show our method surpasses existing detectors in accuracy and effectiveness.
引用
收藏
页码:680 / 690
页数:11
相关论文
共 50 条
  • [41] Margin Guidance Network for Arbitrary-shaped Scene Text Detection
    Li, Xin
    Wu, Xingjiao
    Ma, Tianlong
    Zhou, Zhao
    Chen, Luhui
    He, Liang
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 1111 - 1117
  • [42] Multiorientation/multiscript scene text detection based on projection profile analysis and graph segmentation
    Koo, Hyung I. I.
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [43] Pure Transformer with Integrated Experts for Scene Text Recognition
    Tan, Yew Lee
    Kong, Adams Wai-Kin
    Kim, Jung-Jae
    COMPUTER VISION - ECCV 2022, PT XXVIII, 2022, 13688 : 481 - 497
  • [44] A Transformer-Based Framework for Scene Text Recognition
    Selvam, Prabu
    Koilraj, Joseph Abraham Sundar
    Tavera Romero, Carlos Andres
    Alharbi, Meshal
    Mehbodniya, Abolfazl
    Webber, Julian L.
    Sengan, Sudhakar
    IEEE ACCESS, 2022, 10 : 100895 - 100910
  • [45] Vision Transformer for Fast and Efficient Scene Text Recognition
    Atienza, Rowel
    DOCUMENT ANALYSIS AND RECOGNITION - ICDAR 2021, PT I, 2021, 12821 : 319 - 334
  • [46] Display-Semantic Transformer for Scene Text Recognition
    Yang, Xinqi
    Silamu, Wushour
    Xu, Miaomiao
    Li, Yanbing
    SENSORS, 2023, 23 (19)
  • [47] Could scene context be beneficial for scene text detection?
    Zhu, Anna
    Gao, Renwu
    Uchida, Seiichi
    PATTERN RECOGNITION, 2016, 58 : 204 - 215
  • [48] SEMANTIC-COMPENSATED AND ATTENTION-GUIDED NETWORK FOR SCENE TEXT DETECTION
    Zhao, Yizhan
    Li, Sumei
    Li, Yueyang
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 939 - 943
  • [49] Scene text detection using enhanced Extremal region and convolutional neural network
    Fatemeh Naiemi
    Vahid Ghods
    Hassan Khalesi
    Multimedia Tools and Applications, 2020, 79 : 27137 - 27159
  • [50] RFRN: A recurrent feature refinement network for accurate and efficient scene text detection
    Deng, Guanyu
    Ming, Yue
    Xue, Jing-Hao
    NEUROCOMPUTING, 2021, 453 : 465 - 481