Katz type p-adic L-functions for primes p non-split in the CM field

被引:0
作者
Andreatta, Fabrizio [1 ]
Iovita, Adrian [2 ,3 ]
机构
[1] Univ Milan, Dept Math, via Saldini 50, I-20133 Milan, Italy
[2] Concordia Univ, Dept Math & Stat, 1400 Maisonneuve W Blvd, Montreal, PQ H2G 1M8, Canada
[3] Univ Padua, Dept Math, via Trieste 63, I-3500 Padua, Italy
关键词
p- adic L- functions; overconvergent de Rham classes; Abel-Jacobi maps; CYCLES;
D O I
10.4171/CMH/577
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every triple F, K, p where F is a classical elliptic eigenform, K is a quadratic imaginary field and p is an odd prime integer which is not split in K, we attach a p- adic L- function which interpolates the algebraic parts of the special values of the complex L- func- tions of F twisted by algebraic Hecke characters of K such that the p- part of their conductor is p n , with n large enough (for p >= 5 it suffices n >= 2 ). This construction extends a classical construction of N. Katz for F an Eisenstein series, and of Bertolini-Darmon-Prasanna for F a cuspform when p is split in K. Moreover, we prove a Kronecker limit formula, respectively, p- adic Gross-Zagier formulae, for our newly defined p- adic L- functions.
引用
收藏
页码:641 / 716
页数:76
相关论文
共 15 条
[1]  
Andreatta F., 2018, P INT C MATH RIO DE, VII, P249
[2]   TRIPLE PRODUCT p-ADIC L-FUNCTIONS ASSOCIATED TO FINITE SLOPE p-ADIC FAMILIES OF MODULAR FORMS [J].
Andreatta, Fabrizio ;
Iovita, Adrian .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (09) :1989-2083
[3]   THE HALO SPECTRAL [J].
Andreatta, Fabrizio ;
Iovita, Adrian ;
Pilloni, Vincent .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2018, 51 (03) :603-655
[4]   OVERCONVERGENT MODULAR SHEAVES AND MODULAR FORMS FOR GL2/F [J].
Andreatta, Fabrizio ;
Iovita, Adrian ;
Stevens, Glenn .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 201 (01) :299-359
[5]   The radius of convergence of the p-adic sigma function [J].
Bannai, Kenichi ;
Kobayashi, Shinichi ;
Yasuda, Seidai .
MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) :751-781
[6]   ALGEBRAIC THETA FUNCTIONS AND THE p-ADIC INTERPOLATION OF EISENSTEIN-KRONECKER NUMBERS [J].
Bannai, Kenichi ;
Kobayashi, Shinichi .
DUKE MATHEMATICAL JOURNAL, 2010, 153 (02) :229-295
[7]  
Berthelot P., 1978, NOTES CRYSTALLINE CO
[8]  
Bertolini M, 2014, LOND MATH S, V414, P52
[9]   GENERALIZED HEEGNER CYCLES AND p-ADIC RANKIN L-SERIES [J].
Bertolini, Massimo ;
Darmon, Henri ;
Prasanna, Kartik .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1033-1148
[10]   p-ADIC L-FUNCTIONS AND RATIONAL POINTS ON CM ELLIPTIC CURVES AT INERT PRIMES [J].
Burungale, Ashay A. ;
Kobayashi, Shinichi ;
Ota, Kazuto .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (03) :1417-1460