PERMMA: Enhancing parameter estimation of software reliability growth models: A comparative analysis of metaheuristic optimization algorithms

被引:0
|
作者
Pradhan, Vishal [1 ]
Patra, Arijit [1 ]
Jain, Ankush [2 ]
Jain, Garima [3 ]
Kumar, Ajay [4 ]
Dhar, Joydip [4 ]
Bandyopadhyay, Anjan [5 ]
Mallik, Saurav [6 ,7 ]
Ahmad, Naim [8 ]
Badawy, Ahmed Said [8 ]
机构
[1] Kalinga Inst Ind Technol, Sch Appl Sci, Bhubaneswar, Odisha, India
[2] Netaji Subhas Univ Technol, Dept Comp Sci & Engn, New Delhi, India
[3] Noida Inst Engn & Technol, Dept Comp Sci & Business Syst, Greater Noida, India
[4] Indian Inst Informat Technol & Management Gwalior, Dept Engn Sci, ABV, Gwalior, MP, India
[5] Kalinga Inst Ind Technol, Sch Comp Sci & Engn, Bhubaneswar, Odisha, India
[6] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[7] Univ Arizona, Dept Pharmacol & Toxicol, Tucson, AZ 85721 USA
[8] King Khalid Univ, Coll Comp Sci, Abha, Saudi Arabia
来源
PLOS ONE | 2024年 / 19卷 / 09期
关键词
FAULT-DETECTION; TESTING-EFFORT; CHANGE-POINT; SYSTEMS;
D O I
10.1371/journal.pone.0304055
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Software reliability growth models (SRGMs) are universally admitted and employed for reliability assessment. The process of software reliability analysis is separated into two components. The first component is model construction, and the second is parameter estimation. This study concentrates on the second segment parameter estimation. The past few decades of literature observance say that the parameter estimation was typically done by either maximum likelihood estimation (MLE) or least squares estimation (LSE). Increasing attention has been noted in stochastic optimization methods in the previous couple of decades. There are various limitations in the traditional optimization criteria; to overcome these obstacles metaheuristic optimization algorithms are used. Therefore, it requires a method of search space and local optima avoidance. To analyze the applicability of various developed meta-heuristic algorithms in SRGMs parameter estimation. The proposed approach compares the meta-heuristic methods for parameter estimation by various criteria. For parameter estimation, this study uses four meta-heuristics algorithms: Grey-Wolf Optimizer (GWO), Regenerative Genetic Algorithm (RGA), Sine-Cosine Algorithm (SCA), and Gravitational Search Algorithm (GSA). Four popular SRGMs did the comparative analysis of the parameter estimation power of these four algorithms on three actual-failure datasets. The estimated value of parameters through meta-heuristic algorithms are approximately near the LSE method values. The results show that RGA and GWO are better on a variety of real-world failure data, and they have excellent parameter estimation potential. Based on the convergence and R2 distribution criteria, this study suggests that RGA and GWO are more appropriate for the parameter estimation of SRGMs. RGA could locate the optimal solution more correctly and faster than GWO and other optimization techniques.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Mixture copula parameter estimation with metaheuristic algorithms, comparative study under hydrological context
    Gontara, Emna
    Chebana, Fateh
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2025, : 1307 - 1326
  • [22] Estimation of Reliability Parameters of Software Growth Models Using A Variation of Particle Swarm Optimization
    Bidhan, Karambir
    Awasthi, Adima
    2014 5TH INTERNATIONAL CONFERENCE CONFLUENCE THE NEXT GENERATION INFORMATION TECHNOLOGY SUMMIT (CONFLUENCE), 2014, : 800 - 805
  • [23] Comparative analysis of hybrid and metaheuristic parameter estimation methods of solar PV
    Rawat, Nikita
    Thakur, Padmanabh
    MATERIALS TODAY-PROCEEDINGS, 2022, 65 : 3748 - 3756
  • [24] An analysis on the performance of metaheuristic algorithms for the estimation of parameters in solar cell models
    Navarro, Mario A.
    Oliva, Diego
    Ramos-Michel, Alfonso
    Haro, Eduardo H.
    ENERGY CONVERSION AND MANAGEMENT, 2023, 276
  • [25] Parameter estimation of discrete logistic curve models for software reliability assessment
    Satoh, D
    Yamada, S
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2002, 19 (01) : 39 - 53
  • [26] Parameter estimation of discrete logistic curve models for software reliability assessment
    Daisuke Satoh
    Shigeru Yamada
    Japan Journal of Industrial and Applied Mathematics, 2002, 19 : 39 - 53
  • [27] Exploring Simulated Annealing Algorithm for Parameter Estimation of Software Reliability Models
    Zeng Min
    Li Haifeng
    Wang Xuecheng
    Lu Minyan
    PROCEEDINGS OF 2009 INTERNATIONAL SYMPOSIUM ON AIRCRAFT AIRWORTHINESS, 2009, : 489 - 493
  • [28] Software reusability metrics estimation: Algorithms, models and optimization techniques
    Padhy, Neelamdhab
    Singh, R. P.
    Satapathy, Suresh Chandra
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 69 : 653 - 668
  • [29] An Efficient Method for Parameter Estimation of Software Reliability Growth Model Using Artificial Bee Colony Optimization
    Mallikharjuna, Rao K.
    Kodali, Anuradha
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, SEMCCO 2014, 2015, 8947 : 765 - 776
  • [30] Error Analysis of Optimization Algorithms in Ultrasonic Parameter Estimation
    Aditya, N. Ram
    Abhijeeth, K. Sri
    Anuraj, K.
    Poorna, S. S.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 115 - 117