Expression and purification of recombinant glutaredoxin 1 and protection against oxidative stress injury during cerebral ischemia-reperfusion injury

被引:0
|
作者
Li, Zi-teng [1 ]
Lin, Tong [1 ]
Sun, Yu [1 ]
Wang, Xin-yi [1 ]
Yang, Yi-xuan [1 ]
Gan, Li [1 ]
Xu, Jia-ming [1 ]
Wei, Xu-ting [1 ]
Zhu, Huang-qing [1 ]
Zhao, Wei-chun [1 ]
Zhu, Zhen-hong [1 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Life Sci, Hangzhou 310053, Zhejiang, Peoples R China
关键词
Grx1; Gene expression; Antioxidant; Anti-apoptosis; Ischemic stroke; SIGNALING PATHWAY; INFLAMMATION;
D O I
10.1016/j.pep.2025.106689
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Glutaredoxin (Grx) is a small molecular protein widely found in both prokaryotes and eukaryotes, serving various biological functions, including participation in redox reactions and exerting anti-apoptotic effects[1]. To evaluate the protective effect of recombinant Grx1 against oxidative stress, we constructed the pET-30a (+)/Grx1 recombinant plasmid and performed soluble expression and purification of the recombinant Grx1. In vitro experiments, including ABTS and DPPH radical scavenging assays, showed that recombinant Grx1 has significant antioxidant activity. Reactive oxygen species detection revealed that the levels of reactive oxygen species in the Grx1 treatment group decreased by 33.01 % compared to the H2O2 group. Flow cytometry analyses indicated that the number of apoptotic cells in the Grx1 treatment group decreased by 23.51 % relative to the H2O2 group. Additionally, qRT-PCR analysis showed that Grx1 significantly reduced the expression levels of genes such as IL1 beta, TNF-alpha, IL-6, and caspase-3 in PC12 cells. In vivo, recombinant Grx1 was utilized to treat cerebral ischemiareperfusion injury (CIRI). Histological staining revealed that recombinant Grx1 significantly mitigated hippocampal tissue damage. Western blotting analysis demonstrated that Grx1 can reduce neuronal apoptosis following CIRI by decreasing Bax expression while increasing Bcl-2 expression. Furthermore, Grx1 was shown to modulate the HO-1/Nrf2 signaling pathway by elevating the expression of Nrf2 and HO-1. In summary, this study successfully overexpressed biologically active Grx1 in E. coli, and confirms that recombinant Grx1 exhibits remarkable antioxidant activity in both in vitro and in vivo experiments, effectively alleviating oxidative stress damage associated with ischemic stroke.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] PROTECTION BY THE EPH-EPHRIN SYSTEM AGAINST MESENTERIC ISCHEMIA-REPERFUSION INJURY
    Vivo, Valentina
    Zini, Irene
    Cantoni, Anna Maria
    Grandi, Andrea
    Tognolini, Massimiliano
    Castelli, Riccardo
    Ballabeni, Vigilio
    Bertoni, Simona
    Barocelli, Elisabetta
    SHOCK, 2017, 48 (06): : 681 - 689
  • [32] Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion
    Shi, Honglian
    Liu, Ke Jian
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2007, 12 : 1318 - 1328
  • [33] Carnosol protects against renal ischemia-reperfusion injury in rats
    Zheng, Yi
    Zhang, Yong
    Zheng, Yichun
    Zhang, Nan
    EXPERIMENTAL ANIMALS, 2018, 67 (04) : 545 - 553
  • [34] Protective Effects and Mechanisms of Action of Ulinastatin against Cerebral Ischemia-Reperfusion Injury
    Lv, Bing
    Jiang, Xiao-Ming
    Wang, Da-Wei
    Chen, Jing
    Han, Dong-Feng
    Liu, Xiao-Liang
    CURRENT PHARMACEUTICAL DESIGN, 2020, 26 (27) : 3332 - 3340
  • [35] Aconitate decarboxylase 1 suppresses cerebral ischemia-reperfusion injury in mice
    Vigil, Thomas M.
    Frieler, Ryan A.
    Kilpatrick, KiAundra L.
    Wang, Michael M.
    Mortensen, Richard M.
    EXPERIMENTAL NEUROLOGY, 2022, 347
  • [36] Effects of Kallistatin on Oxidative Stress and Inflammation on Renal Ischemia-Reperfusion Injury in Mice
    Zhou, Shuqin
    Sun, Yingying
    Zhuang, Yugang
    Zhao, Wei
    Chen, Yuanzhuo
    Jiang, Bojie
    Guo, Changfeng
    Zhang, Zhonglin
    Peng, Hu
    Chen, Yanqing
    CURRENT VASCULAR PHARMACOLOGY, 2015, 13 (02) : 265 - 273
  • [37] Neuroprotective Effect of Fisetin Against the Cerebral Ischemia-Reperfusion Damage via Suppression of Oxidative Stress and Inflammatory Parameters
    Zhang, Peng
    Cui, Jian
    INFLAMMATION, 2021, 44 (04) : 1490 - 1506
  • [38] Neuroprotective and Anti-inflammatory Effect of Tangeretin Against Cerebral Ischemia-Reperfusion Injury in Rats
    Yang, Tiansong
    Feng, Chuwen
    Wang, Dongyan
    Qu, Yuanyuan
    Yang, Yan
    Wang, Yulin
    Sun, Zhongren
    INFLAMMATION, 2020, 43 (06) : 2332 - 2343
  • [39] Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents
    Sasaki, Makoto
    Joh, Takashi
    JOURNAL OF CLINICAL BIOCHEMISTRY AND NUTRITION, 2007, 40 (01) : 1 - 12
  • [40] Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress
    Tsuda, Hidetoshi
    Kawada, Noritaka
    Kaimori, Jun-ya
    Kitamura, Harumi
    Moriyama, Toshiki
    Rakugi, Hiromi
    Takahara, Shiro
    Isaka, Yoshitaka
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 427 (02) : 266 - 272