Expression and purification of recombinant glutaredoxin 1 and protection against oxidative stress injury during cerebral ischemia-reperfusion injury

被引:0
|
作者
Li, Zi-teng [1 ]
Lin, Tong [1 ]
Sun, Yu [1 ]
Wang, Xin-yi [1 ]
Yang, Yi-xuan [1 ]
Gan, Li [1 ]
Xu, Jia-ming [1 ]
Wei, Xu-ting [1 ]
Zhu, Huang-qing [1 ]
Zhao, Wei-chun [1 ]
Zhu, Zhen-hong [1 ]
机构
[1] Zhejiang Chinese Med Univ, Sch Life Sci, Hangzhou 310053, Zhejiang, Peoples R China
关键词
Grx1; Gene expression; Antioxidant; Anti-apoptosis; Ischemic stroke; SIGNALING PATHWAY; INFLAMMATION;
D O I
10.1016/j.pep.2025.106689
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Glutaredoxin (Grx) is a small molecular protein widely found in both prokaryotes and eukaryotes, serving various biological functions, including participation in redox reactions and exerting anti-apoptotic effects[1]. To evaluate the protective effect of recombinant Grx1 against oxidative stress, we constructed the pET-30a (+)/Grx1 recombinant plasmid and performed soluble expression and purification of the recombinant Grx1. In vitro experiments, including ABTS and DPPH radical scavenging assays, showed that recombinant Grx1 has significant antioxidant activity. Reactive oxygen species detection revealed that the levels of reactive oxygen species in the Grx1 treatment group decreased by 33.01 % compared to the H2O2 group. Flow cytometry analyses indicated that the number of apoptotic cells in the Grx1 treatment group decreased by 23.51 % relative to the H2O2 group. Additionally, qRT-PCR analysis showed that Grx1 significantly reduced the expression levels of genes such as IL1 beta, TNF-alpha, IL-6, and caspase-3 in PC12 cells. In vivo, recombinant Grx1 was utilized to treat cerebral ischemiareperfusion injury (CIRI). Histological staining revealed that recombinant Grx1 significantly mitigated hippocampal tissue damage. Western blotting analysis demonstrated that Grx1 can reduce neuronal apoptosis following CIRI by decreasing Bax expression while increasing Bcl-2 expression. Furthermore, Grx1 was shown to modulate the HO-1/Nrf2 signaling pathway by elevating the expression of Nrf2 and HO-1. In summary, this study successfully overexpressed biologically active Grx1 in E. coli, and confirms that recombinant Grx1 exhibits remarkable antioxidant activity in both in vitro and in vivo experiments, effectively alleviating oxidative stress damage associated with ischemic stroke.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hyperoside protects against cerebral ischemia-reperfusion injury by alleviating oxidative stress, inflammation and apoptosis in rats
    He, Jinting
    Li, Haiqi
    Li, Gaofeng
    Yang, Le
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2019, 33 (01) : 798 - 806
  • [2] Garcinol protects against cerebral ischemia-reperfusion injury in vivo and in vitro by inhibiting inflammation and oxidative stress
    Kang, Yingchao
    Sun, Yaping
    Li, Tiantian
    Ren, Zelin
    MOLECULAR AND CELLULAR PROBES, 2020, 54
  • [3] Progranulin protects against cerebral ischemia-reperfusion (I/R) injury by inhibiting necroptosis and oxidative stress
    Li, Xiaogang
    Cheng, Shaoli
    Hu, Hao
    Zhang, Xiaotian
    Xu, Jiehua
    Wang, Rui
    Zhang, Pengbo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 521 (03) : 569 - 576
  • [4] Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress
    Lu, Qing
    Xia, Ning
    Xu, Hui
    Guo, Lianjun
    Wenzel, Philip
    Daiber, Andreas
    Muenzel, Thomas
    Foerstermann, Ulrich
    Li, Huige
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2011, 24 (03): : 132 - 138
  • [5] BRAP silencing protects against neuronal inflammation, oxidative stress and apoptosis in cerebral ischemia-reperfusion injury by promoting PON1 expression
    Kang, Tao
    Qin, Xiao
    Lei, Qi
    Yang, Qian
    ENVIRONMENTAL TOXICOLOGY, 2023, 38 (11) : 2645 - 2655
  • [6] Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury
    Lim, Songhyun
    Kim, Tae Jung
    Kim, Young-Ju
    Kim, Cheesue
    Ko, Sang-Bae
    Kim, Byung-Soo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (21)
  • [7] Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress
    Wang, Meihua
    Chen, Zhilin
    Yang, Lei
    Ding, Lei
    INFLAMMATION, 2021, 44 (03) : 934 - 945
  • [8] Protection of a novel velvet antler polypeptide PNP1 against cerebral ischemia-reperfusion injury
    Pei, Hongyan
    Du, Rui
    He, Zhongmei
    Yang, Yi
    Wu, Shasha
    Li, Wenyan
    Sheng, Jian
    Lv, Yahui
    Han, Chenyang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 247
  • [9] Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress
    Meihua Wang
    Zhilin Chen
    Lei Yang
    Lei Ding
    Inflammation, 2021, 44 : 934 - 945
  • [10] Oxidative and nitrosative stress during pulmonary ischemia-reperfusion injury: from the lab to the OR
    Gielis, Jan F.
    Beckers, Paul A. J.
    Briede, Jacco J.
    Cos, Paul
    Van Schil, Paul E.
    ANNALS OF TRANSLATIONAL MEDICINE, 2017, 5 (06)