Explainable AI supported hybrid deep learnig method for layer 2 intrusion detection

被引:0
作者
Kilincer, Ilhan Firat [1 ]
机构
[1] Firat Univ, Digital Forens Engn, Elazig, Turkiye
关键词
IDS; Deep Learning; Explainable AI;
D O I
10.1016/j.eij.2025.100669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With rapidly developing technology, digitalization environments are also expanding. Although this situation has many positive effects on daily life, the security vulnerabilities brought about by digitalization continue to be a major concern. There is a large network structure behind many applications provided to users by organizations. A substantial network infrastructure exists behind numerous applications made available to users by organisations. It is imperative that these extensive network infrastructures, which often contain sensitive data including personal, commercial, financial and security information, possess the capability to impede cyberattacks. This study proposes the creation of a Comprehensive Layer 2 - IDS (CL2-IDS) dataset for the development of IDS systems utilised in the local network structures of organisations, in conjunction with a hybrid deep learning (DL) model for the detection of attack vectors in the proposed dataset. The proposed hybrid model is obtained by using CNN (Convolutional Neural Networks) and Bi-LSTM (Bidirectional Long Short-Term Memory) models, which are widely used in areas such as image analysis and time series data. The proposed hybrid DL model achieved an accuracy of 95.28% in the classification of the CL2-IDS dataset. It is observed that the combination of these two deep learning models, which complement each other in various ways, yields successful results in the classification of the proposed CL2-IDS dataset. In the last part of the study, the effect of the features in the CL2IDS dataset on the classification is interpreted with SHapley Additive exPlanations (SHAP), an Explainable Artificial Intelligence (XAI) method. The study, CL2-IDS dataset and hybrid DL model, combinations of CNN and Bi-LSTM algorithms, facilitates the intrusion detection and exemplifies how DL models and XAI techniques can be used to support IDS systems.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Hybrid optimization and deep learning based intrusion detection system
    Gupta, Subham Kumar
    Tripathi, Meenakshi
    Grover, Jyoti
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [42] Explainable deep learning method for laser welding defect detection
    Liu T.
    Zheng H.
    Yang C.
    Bao J.
    Wang J.
    Gu J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2022, 43 (04):
  • [43] Explainable AI: A Hybrid Approach to Generate Human-Interpretable Explanation for Deep Learning Prediction
    De, Tanusree
    Giri, Prasenjit
    Mevawala, Ahmeduvesh
    Nemani, Ramyasri
    Deo, Arati
    COMPLEX ADAPTIVE SYSTEMS, 2020, 168 : 40 - 48
  • [44] Battery state-of-health estimation: An ultrasonic detection method with explainable AI
    Liu, Kailong
    Fang, Jingyang
    Zhao, Shiwen
    Liu, Yuhang
    Dai, Haifeng
    Ye, Liwang
    Peng, Qiao
    ENERGY, 2025, 319
  • [45] Enhancing Intrusion Detection Systems With Advanced Machine Learning Techniques: An Ensemble and Explainable Artificial Intelligence (AI) Approach
    Alatawi, Mohammed Naif
    SECURITY AND PRIVACY, 2025, 8 (01):
  • [47] Performance Improvement of DDoS Intrusion Detection Model Using Hybrid Deep Learning Method in the SDN Environment
    Chetouane, Ameni
    Karoui, Kamel
    2022 IEEE 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS, IUCC/CIT/DSCI/SMARTCNS, 2022, : 159 - 166
  • [48] Deep Learning-Based Hybrid Intelligent Intrusion Detection System
    Khan, Muhammad Ashfaq
    Kim, Yangwoo
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 671 - 687
  • [49] Hybrid Intrusion Detection System Based on Data Resampling and Deep Learning
    Chen, Huan
    You, Gui-Rong
    Shiue, Yeou-Ren
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (02) : 121 - 135
  • [50] Hybrid Deep Learning Enabled Intrusion Detection in Clustered IIoT Environment
    Marzouk, Radwa
    Alrowais, Fadwa
    Negm, Noha
    Alkhonaini, Mimouna Abdullah
    Hamza, Manar Ahmed
    Rizwanullah, Mohammed
    Yaseen, Ishfaq
    Motwakel, Abdelwahed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (02): : 3763 - 3775