Comparing logistic regression and machine learning for obesity risk prediction: A systematic review and meta-analysis

被引:0
|
作者
Boakye, Nancy Fosua [1 ,3 ]
O'Toole, Ciaran Courtney [2 ,3 ]
Jalali, Amirhossein [2 ,3 ]
Hannigan, Ailish [2 ,3 ]
机构
[1] Univ Limerick, Res Ireland Ctr Res Training Fdn Data Sci, Dept Math & Stat, Limerick, Ireland
[2] Univ Limerick, Sch Med, Limerick, Ireland
[3] Univ Limerick, Hlth Res Inst HRI, Limerick V94 T9PX, Ireland
关键词
Machine learning; Logistic regression; Obesity; Clinical prediction model; AUC; Systematic review; Meta-analysis; BIG DATA; HEALTH; EXPLANATION; DISEASE; MODEL;
D O I
10.1016/j.ijmedinf.2025.105887
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: Logistic regression (LR) has traditionally been the standard method used for predicting binary health outcomes; however, machine learning (ML) methods are increasingly popular. Objective: This study aimed to compare the performance of ML and LR for obesity risk prediction, identify how LR and ML were being compared, and identify the commonly used ML methods. Methods: We conducted comprehensive searches in PubMed, Scopus, Embase, IEEE Xplore, and Web of Science databases on 24th November 2023, with no restrictions on publication dates. Meta-analyses were performed to quantify the overall predictive performance of the methods using the area under the curve (AUC) for LR, AUC for the best performing ML, as well as the difference in the AUC between the two approaches as the effect measures. Results: We included 28 studies out of 913 abstracts screened. Accuracy and sensitivity were the most commonly used performance measures. More than half of the studies used AUC, with no calibration assessment conducted in any of the studies. Decision trees followed by boosting algorithms were the most commonly used ML methods. Seventy-five percent of the studies were at high risk of bias. There were 14 included studies in the meta-analysis. The pooled AUC for LR was 0.75 (95% CI 0.70 to 0.80) and the pooled AUC for ML was 0.76 (95% CI 0.70 to 0.82). The pooled difference in logit(AUC) between ML and LR was 0.13 (95% CI-0.11 to 0.37). Conclusion: We conclude that there is no significant difference in the performance of ML and LR for obesity risk prediction. However, there is a need for improved quality of reporting of studies, the use of more performance measures particularly calibration, and to validate models in different populations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Machine learning in the prediction of immunotherapy response and prognosis of melanoma: a systematic review and meta-analysis
    Li, Juan
    Dan, Kena
    Ai, Jun
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [32] Prediction models for children/adolescents with obesity/overweight: A systematic review and meta-analysis
    Gou, Hao
    Song, Huiling
    Tian, Zhiqing
    Liu, Yan
    PREVENTIVE MEDICINE, 2024, 179
  • [33] Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight
    Ferreras, Antonio
    Sumalla-Cano, Sandra
    Martinez-Licort, Rosmeri
    Elio, Inaka
    Tutusaus, Kilian
    Prola, Thomas
    Vidal-Mazon, Juan Luis
    Sahelices, Benjamin
    Diez, Isabel de la Torre
    JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [34] The infiltration risk prediction models by logistic regression for ground-glass pulmonary nodules: a systematic review and meta-analysis
    Li, Mengqian
    Zhang, Xiaomei
    Lai, Yuxin
    Sun, Yunlong
    Yang, Tianshu
    Tan, Xinlei
    FRONTIERS IN ONCOLOGY, 2025, 14
  • [35] Systematic Review of Machine Learning applied to the Prediction of Obesity and Overweight
    Antonio Ferreras
    Sandra Sumalla-Cano
    Rosmeri Martínez-Licort
    Iñaki Elío
    Kilian Tutusaus
    Thomas Prola
    Juan Luís Vidal-Mazón
    Benjamín Sahelices
    Isabel de la Torre Díez
    Journal of Medical Systems, 47
  • [36] Obesity and Risk of Small Intestine Bacterial Overgrowth: A Systematic Review and Meta-Analysis
    Wijarnpreecha, Karn
    Werlang, Monia E.
    Watthanasuntorn, Kanramon
    Panjawatanan, Panadeekarn
    Cheungpasitporn, Wisit
    Gomez, Victoria
    Lukens, Frank J.
    Ungprasert, Patompong
    DIGESTIVE DISEASES AND SCIENCES, 2020, 65 (05) : 1414 - 1422
  • [37] Predictive value of machine learning on fracture risk in osteoporosis: a systematic review and meta-analysis
    Wu, Yanqian
    Chao, Jianqian
    Bao, Min
    Zhang, Na
    BMJ OPEN, 2023, 13 (12):
  • [38] Performance of machine learning algorithms for surgical site infection case detection and prediction: A systematic review and meta-analysis
    Wu, Guosong
    Khair, Shahreen
    Yang, Fengjuan
    Cheligeer, Cheligeer
    Southern, Danielle
    Zhang, Zilong
    Feng, Yuanchao
    Xu, Yuan
    Quan, Hude
    Williamson, Tyler
    Eastwood, Cathy A.
    ANNALS OF MEDICINE AND SURGERY, 2022, 84
  • [39] Sleep duration and obesity in adulthood: An updated systematic review and meta-analysis
    Bacaro, Valeria
    Ballesio, Andrea
    Cerolini, Silvia
    Vacca, Mariacarolina
    Poggiogalle, Eleonora
    Donini, Lorenzo Maria
    Lucidi, Fabio
    Lombardo, Caterina
    OBESITY RESEARCH & CLINICAL PRACTICE, 2020, 14 (04) : 301 - 309
  • [40] Systematic review and network meta-analysis of machine learning algorithms in sepsis prediction
    Gao, Yulei
    Wang, Chaolan
    Shen, Jiaxin
    Wang, Ziyi
    Liu, Yancun
    Chai, Yanfen
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 245