Complete Chloroplast Genome of Crassula aquatica: Comparative Genomic Analysis and Phylogenetic Relationships

被引:1
|
作者
Park, Kyu Tae [1 ]
Son, Ogyeong [2 ]
机构
[1] Yeungnam Univ, Dept Life Sci, Gyongsan 38541, South Korea
[2] Daegu Natl Sci Museum, Management Planning Div, Planning & Budget Off, Daegu 43023, South Korea
关键词
Crassula aquatica; Crassulaceae; chloroplast genome; rpoC1 intron loss; codon usage; phylogeny; SEQUENCE; TOOLS; MICROSATELLITES; MITOCHONDRIAL; ALIGNMENT; INTRON;
D O I
10.3390/genes15111399
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background/Objectives: Crassula aquatica (L.) Schonl. is a very small annual plant growing along riverbanks. Chloroplast (cp) genomes, crucial for photosynthesis, are highly conserved and play a key role in understanding plant evolution. In this study, we conducted cp genome analysis of C. aquatica, aiming to elucidate its phylogenetic position and structural variations. We analyzed and described the features of the complete cp genome of C. aquatica and conducted comparative analysis with the cp genomes of closely related taxa. Rsults: The cp genome was 144,503 bp in length and exhibited the typical quadripartite structure, consisting of a large single-copy region (LSC; 77,993 bp), a small single-copy region (SSC; 16,784 bp), and two inverted repeats (24,863 bp). The cp genome of C. aquatica comprised 113 unique genes, including 79 protein-coding genes (PCGs), 30 tRNAs, and 4 rRNA genes. Comparative genomic analysis of 13 other Crassula species and six outgroups demonstrated highly conserved gene content and order among Crassula species. However, notable differences were observed, including the complete loss of the rpoC1 intron in C. aquatica and several closely related species, which may serve as a synapomorphic trait supporting the monophyly of the subgenus Disporocarpa. We analyzed the nucleotide diversity among 14 Crassula cp genomes and identified five highly variable regions (pi > 0.08) in the IGS regions. Phylogenetic analysis based on 78 PCGs confirmed the monophyly of Crassula and its division into two subgenera: Crassula and Disporocarpa. Although the phylogenetic tree supported the subgeneric classification system, the sectional classification system requires reassessment. Conclusions: In this study, we conducted a comparative analysis of the cp genome of the genus Crassula. We inferred evolutionary trends within the Crassula cp genome and provided molecular evidence supporting the integration of the genus Tillaea into the genus Crassula. However, as this study does not represent all species within the genus Tillaea, further comprehensive phylogenetic analyses are requrired.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] The Chloroplast Genome of Wild Saposhnikovia divaricata: Genomic Features, Comparative Analysis, and Phylogenetic Relationships
    Yi, Shanyong
    Lu, Haibo
    Wang, Wei
    Wang, Guanglin
    Xu, Tao
    Li, Mingzhi
    Gu, Fangli
    Chen, Cunwu
    Han, Bangxing
    Liu, Dong
    GENES, 2022, 13 (05)
  • [2] Comparative analysis of the complete chloroplast genome of Pueraria provides insights for species identification, phylogenetic relationships, and taxonomy
    Hai, Yonglin
    Huang, Xianjun
    Sun, Hanzhu
    Sun, Jin
    Li, Jian
    Zhang, Yunta
    Qian, Yan
    Wu, Jingjing
    Yang, Yongcheng
    Xia, Conglong
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [3] Comparative analysis of the complete chloroplast genome of seven Wikstroemia taxa (Thymelaeaceae) provides insights into the genome structure and phylogenetic relationships
    Zhang, Chaoqiang
    Li, Jinglong
    Yan, Fang
    Wang, Zhaofeng
    Zeng, Xiucun
    Zhang, Jiayin
    PLANTA, 2025, 261 (02)
  • [4] The complete chloroplast genome sequences of six Hylotelephium species: Comparative genomic analysis and phylogenetic relationships
    An, Sung-Mo
    Kim, Bo-Yun
    Kang, Halam
    Lee, Ha-Rim
    Lee, Yoo-Bin
    Park, Yoo-Jung
    Cheon, Kyeong-Sik
    Kim, Kyung-Ah
    PLOS ONE, 2023, 18 (10):
  • [5] The chloroplast genome of Prunus zhengheensis: Genome comparative and phylogenetic relationships analysis
    Huang, Xiao
    Tan, Wei
    Li, Feng
    Liao, Ruyu
    Guo, Zhongren
    Shi, Ting
    Gao, Zhihong
    GENE, 2021, 793
  • [6] The Complete Chloroplast Genome of an Epiphytic Leafless Orchid, Taeniophyllum complanatum: Comparative Analysis and Phylogenetic Relationships
    Zhou, Zhuang
    Chen, Jinliao
    Wang, Fei
    Wu, Xiaopei
    Liu, Zhongjian
    Peng, Donghui
    Lan, Siren
    HORTICULTURAE, 2024, 10 (06)
  • [7] Comparative Genomic Analysis Uncovers the Chloroplast Genome Variation and Phylogenetic Relationships of Camellia Species
    Lin, Ping
    Yin, Hengfu
    Wang, Kailiang
    Gao, Haidong
    Liu, Lei
    Yao, Xiaohua
    BIOMOLECULES, 2022, 12 (10)
  • [8] Comparative Analysis of the Chloroplast Genome for Aconitum Species: Genome Structure and Phylogenetic Relationships
    Xia, Conglong
    Wang, Manjiong
    Guan, Yunhui
    Li, Jian
    FRONTIERS IN GENETICS, 2022, 13
  • [9] Complete Chloroplast Genome Sequence of Dahlia imperialis (Asteraceae): Comparative Analysis and Phylogenetic Relationships
    Duan, Shan-De
    Liu, Yang
    Hao, Li-Hong
    Xiang, Di-Ying
    Yu, Wen-Bin
    Liang, Juan
    Chen, Duan-Fen
    Niu, Shan-Ce
    HORTICULTURAE, 2024, 10 (01)
  • [10] Chloroplast genome of Justicia procumbens: genomic features, comparative analysis, and phylogenetic relationships among Justicieae species
    Wang, Wei
    Xu, Tao
    Lu, Haibo
    Li, Guosi
    Gao, Leilei
    Liu, Dong
    Han, Bangxing
    Yi, Shanyong
    JOURNAL OF APPLIED GENETICS, 2024, 65 (01) : 31 - 46