Enhanced near-field radiative heat transfer between borophene sheets on different substrates

被引:1
作者
Han, Xiaoyang [1 ]
Fan, Chunzhen [1 ]
机构
[1] Zhengzhou Univ, Sch Phys, Key Lab Mat Phys, Minist Educ, Zhengzhou 450001, Peoples R China
关键词
near-field radiative heat transfer; borophene; lossy substrate; heat transfer coefficient; 78.20.-e; 71.36.+c; 78.20.Bh;
D O I
10.1088/1674-1056/ad84cd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Near-field radiative heat transfer (NFRHT) has the potential to exceed the blackbody limit by several orders of magnitude, offering significant opportunities for energy harvesting. In this study, we have examined the NFRHT between two borophene sheets through the calculation of heat transfer coefficient (HTC). Due to the tunneling of evanescent waves, borophene sheet allows for enhanced heat flux and adjustable NFRHT by varying its electron density and electron relaxation time. Additionally, the near field coupling is further examined when the borophene is deposited on dielectric or lossy substrates. The maximum HTC is closely related to the real part of the dielectric substrate. As a case study, the HTCs on the lossy substrate of MoO3, ZnSe, and SiC are calculated for comparisons. Our results indicate that MoO3 is the optimal substrate to get the enhanced energy transfer coefficient. It results in a remarkable value of 1737 times higher than the blackbody limit owing to the enhanced photon tunneling probability. Thus, our study reveals the effect of substrate on the HTC between borophene sheets and provides a theoretical guidance for the design of near-field thermal radiation devices.
引用
收藏
页数:6
相关论文
共 58 条
[1]   Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings [J].
Amotchkina, Tatiana, V ;
Trubetskov, Michael K. ;
Hahner, Daniel ;
Pervak, Volodymyr .
APPLIED OPTICS, 2020, 59 (05) :A40-A47
[2]   Ultra-strong light-matter coupling for designer Reststrahlen band [J].
Askenazi, B. ;
Vasanelli, A. ;
Delteil, A. ;
Todorov, Y. ;
Andreani, L. C. ;
Beaudoin, G. ;
Sagnes, I. ;
Sirtori, C. .
NEW JOURNAL OF PHYSICS, 2014, 16
[3]   Near-Field Thermal Transistor [J].
Ben-Abdallah, Philippe ;
Biehs, Svend-Age .
PHYSICAL REVIEW LETTERS, 2014, 112 (04)
[4]   Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap [J].
Bernardi, Michael P. ;
Milovich, Daniel ;
Francoeur, Mathieu .
NATURE COMMUNICATIONS, 2016, 7
[5]   Anisotropic localized surface plasmons in borophene [J].
Dereshgi, Sina Abedini ;
Liu, Zizhuo ;
Aydin, Koray .
OPTICS EXPRESS, 2020, 28 (11) :16725-16739
[6]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[7]   Optical properties of graphene [J].
Falkovsky, L. A. .
INTERNATIONAL CONFERENCE ON THEORETICAL PHYSICS 'DUBNA-NANO2008', 2008, 129
[8]   Thermal metamaterials: From static to dynamic heat manipulation [J].
Fan, Chunzhen ;
Wu, Chen-Long ;
Wang, Yuanyuan ;
Wang, Bin ;
Wang, Jun .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1077 :1-111
[9]   Nanogap near-field thermophotovoltaics [J].
Fiorino, Anthony ;
Zhu, Linxiao ;
Thompson, Dakotah ;
Mittapally, Rohith ;
Reddy, Pramod ;
Meyhofer, Edgar .
NATURE NANOTECHNOLOGY, 2018, 13 (09) :806-+
[10]   Hexagonal boron nitride nanophotonics: a record-breaking material for the ultraviolet and visible spectral ranges [J].
Grudinin, D. V. ;
Ermolaev, G. A. ;
Baranov, D. G. ;
Toksumakov, A. N. ;
Voronin, K. V. ;
Slavich, A. S. ;
Vyshnevyy, A. A. ;
Mazitov, A. B. ;
Kruglov, I. A. ;
Ghazaryan, D. A. ;
Arsenin, A. V. ;
Novoselov, K. S. ;
Volkov, V. S. .
MATERIALS HORIZONS, 2023, 10 (07) :2427-2435