Effects of high-temperature annealing on structural and mechanical properties of amorphous carbon materials investigated by molecular dynamics simulations

被引:0
|
作者
Yeh, In-Chul [1 ]
Tran, Ngon T. [2 ]
Knorr, Daniel B., Jr. [2 ]
机构
[1] DEVCOM Army Res Lab, Polymers Branch, Aberdeen Proving Ground, Adelphi, MD 21005 USA
[2] US Army, Res Lab, Composite & Hybrid Mat Branch, Aberdeen Proving Ground, MD 21005 USA
关键词
Graphitization; Carbon material; Molecular dynamics; TRANSMISSION ELECTRON-MICROSCOPY; TIGHT-BINDING METHOD; ELASTIC PROPERTIES; CARBONIZATION; DIFFRACTION; PYROLYSIS; NANOTUBES; PENTAGONS; CHIRALITY; NITROGEN;
D O I
10.1016/j.carbon.2025.120006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigated effects of thermal annealing on structural and mechanical properties of amorphous model carbon materials with molecular dynamics (MD) simulations using a reactive force field. Annealed amorphous carbon materials were prepared by formation of amorphous carbons from disconnected carbon atoms at 4 different initial densities of 1.5, 2.0, 2,5, and 3.0 g/cc and subsequent high-temperature annealing simulations. Carbon atoms with three bonds as in graphite dominated at later stages of annealing at all densities while the fraction of carbon atoms with four bonds increased with the increase of the densities. Carbon ring structures with varying sizes were found in annealed carbon materials. Hexagon rings were observed most frequently, and pentagon-pentagon or heptagon-heptagon neighboring ring pairs were rarely observed. Internal ring structures consistent with planar structures were found more frequently at smaller densities and with smaller ring sizes. Distributions of inter-ring distances along directions parallel and normal to the ring plane were calculated. Peaks in distribution of inter-ring distances normal to the ring plane matched closely those found in graphite. We characterized elastic mechanical properties of annealed carbon materials at different densities by estimating Young's moduli from tensile deformation simulations. We also investigated effects of annealing on structural properties of amorphous carbon with density functional tight binding (DFTB) MD simulation. The configuration of an annealed carbon material prepared with DFTB MD simulation displayed a multi-vacancy defect structure and more planar arrangements of carbon rings than the configuration prepared with MD simulation with a reactive force field.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Effect of High-Temperature Paraffin Impregnation on the Properties of the Amorphous Cellulose Region Based on Molecular Dynamics Simulation
    Qu, Zening
    Wang, Wei
    Hua, Youna
    Cang, Shilong
    FORESTS, 2023, 14 (06):
  • [22] Molecular dynamics simulations on the effects of carbon nanotubes on mechanical properties of bisphenol E cyanate ester validating experimental results
    Rao, P. Subba
    Renji, K.
    Bhat, M. R.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2017, 36 (03) : 186 - 195
  • [23] Mechanical properties of 2D materials: A review on molecular dynamics based nanoindentation simulations
    Patra, Lokanath
    Pandey, Ravindra
    MATERIALS TODAY COMMUNICATIONS, 2022, 31
  • [24] High-temperature thermal decomposition of iso-octane based on reactive molecular dynamics simulations
    Guan, Yulei
    Gao, Yanyan
    Lou, Junpeng
    Zhu, Xingzhen
    Pan, Dandan
    Ma, Haixia
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (05)
  • [25] Molecular dynamics simulations of internal stress evolution in ultrathin amorphous carbon films subjected to thermal annealing
    Wang, Shengxi
    Komvopoulos, Kyriakos
    THIN SOLID FILMS, 2020, 713 (713)
  • [26] Mechanical properties of amorphous cellulose using molecular dynamics simulations with a reactive force field
    Zhang, Xiumei
    Tschopp, Mark A.
    Horstemeyer, Mark F.
    Shi, Sheldon Q.
    Cao, Jun
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 18 (03) : 211 - 217
  • [27] Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires
    Jing, Yuhang
    Meng, Qingyuan
    PHYSICA B-CONDENSED MATTER, 2010, 405 (10) : 2413 - 2417
  • [28] Hydrogen transportation properties in carbon nano-scroll investigated by using molecular dynamics simulations
    Huang, J.
    Wong, C. H.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 102 : 7 - 13
  • [29] Effects of carbon nanotubes functionalization on mechanical and tribological properties of nitrile rubber nanocomposites: Molecular dynamics simulations
    Cui, Jianzheng
    Zhao, Jing
    Wang, Shijie
    Wang, Yan
    Li, Yunlong
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 196
  • [30] Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: A molecular dynamics approach
    Singh, Pradeep Kumar
    Sharma, Kamal
    Kumar, Amit
    Shukla, Mukul
    JOURNAL OF COMPOSITE MATERIALS, 2017, 51 (05) : 671 - 680