The optimised model of predicting protein-metal ion ligand binding residues

被引:0
|
作者
Yang, Caiyun [1 ]
Hu, Xiuzhen [1 ]
Feng, Zhenxing [1 ]
Hao, Sixi [1 ]
Zhang, Gaimei [2 ]
Chen, Shaohua [1 ]
Guo, Guodong [3 ]
机构
[1] Inner Mongolia Univ Technol, Coll Sci, Hohhot, Peoples R China
[2] Hohhot First Hosp, Hohhot, Peoples R China
[3] Baotou Med Coll, Sch Comp Sci & Technol, Baotou, Peoples R China
关键词
biocomputers; bioinformatics; DISORDER; IRON;
D O I
10.1049/syb2.70001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Metal ions are significant ligands that bind to proteins and play crucial roles in cell metabolism, material transport, and signal transduction. Predicting the protein-metal ion ligand binding residues (PMILBRs) accurately is a challenging task in theoretical calculations. In this study, the authors employed fused amino acids and their derived information as feature parameters to predict PMILBRs using three classical machine learning algorithms, yielding favourable prediction results. Subsequently, deep learning algorithm was incorporated in the prediction, resulting in improved results for the sets of Ca2+ and Mg2+ compared to previous studies. The validation matrix provided the optimal prediction model for each ionic ligand binding residue, exhibiting the capability of effectively predicting the binding sites of metal ion ligands for real protein chains.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A comprehensive platform to investigate protein-metal ion interactions by affinity capillary electrophoresis (ACE)
    AlHazmi, Hassan A.
    Nachbar, Markus
    Toshizi, Mona Mozafari
    Redweik, Sabine
    El Deeb, Sami
    El Hady, Deia
    AlBishri, Hassan M.
    Waetzig, Hermann
    JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2014, 19 : S763 - S763
  • [22] A RNA binding score for predicting RNA binding probabilities of protein residues
    Miao, Z.
    Westhof, E.
    FEBS JOURNAL, 2014, 281 : 617 - 617
  • [23] Endor studies of VO2+:: Probing protein-metal ion interactions in nephrocalcin
    Mustafi, D
    Nakagawa, Y
    Makinen, MW
    CELLULAR AND MOLECULAR BIOLOGY, 2000, 46 (08) : 1345 - 1360
  • [24] Predicting protein ligand binding motions with the conformation explorer
    Flores, Samuel C.
    Gerstein, Mark B.
    BMC BIOINFORMATICS, 2011, 12
  • [25] Predicting protein ligand binding motions with the conformation explorer
    Samuel C Flores
    Mark B Gerstein
    BMC Bioinformatics, 12
  • [26] Predicting protein-ligand binding affinity with gnina
    Francoeur, Paul
    Koes, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding
    Huang, Renjie
    Bonnichon, Arnaud
    Claridge, Timothy D. W.
    Leung, Ivanhoe K. H.
    SCIENTIFIC REPORTS, 2017, 7
  • [28] Identifying binding residues in the plasmodium vivax duffy binding protein ligand domain
    McHenry, Amy M.
    VanBuskirk, Kelley M.
    Sevova, Elitza S.
    Adams, John H.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2005, 73 (06): : 133 - 133
  • [29] Protein-ligand binding affinity determination by the waterLOGSY method: An optimised approach considering ligand rebinding
    Renjie Huang
    Arnaud Bonnichon
    Timothy D. W. Claridge
    Ivanhoe K. H. Leung
    Scientific Reports, 7
  • [30] Metal ion and ligand binding of integrin α5β1
    Xia, Wei
    Springer, Timothy A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (50) : 17863 - 17868