Influence of Wideband Cable Model for Electric Vehicle Inverter-Motor Connections: A Comparative Analysis

被引:0
作者
Arafat, Easir [1 ]
Ghassemi, Mona [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Zero Emiss Realizat Optimized Energy Syst ZEROES L, Richardson, TX 75080 USA
基金
美国国家科学基金会;
关键词
wideband cable modeling; EV; wide-bandgap (WBG) inverters; MCTL theory; CP model; finite element analysis (FEM); vector fitting algorithm; transient overvoltages; OPPORTUNITIES; CHALLENGES; TRANSIENT;
D O I
10.3390/machines13030189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electric vehicles (EVs) rely on robust inverter-to-motor connections to ensure high-efficiency operation under the challenging conditions imposed by wide-bandgap (WBG) semiconductors. High switching frequencies and steep voltage rise times in WBG inverters lead to repetitive transient overvoltages, causing insulation degradation and premature motor winding failure. This study proposes a wideband (WB) model of EV cables, developed in EMTP-RV, to improve transient voltage prediction accuracy compared to the traditional constant parameter (CP) model. Using a commercially available EV-dedicated cable, the WB model incorporates frequency-dependent parasitic effects calculated through the vector fitting technique. The motor design is supported by COMSOL Multiphysics and MATLAB 2023 simulations, leveraging the multi-conductor transmission line (MCTL) model for validation. Using practical data from the Toyota Prius 2010 model, including cable length, motor specifications, and power ratings, transient overvoltages generated by high-frequency inverters are studied. The proposed model demonstrates improved alignment with real-world scenarios, providing valuable insights into optimizing insulation systems for EV applications.
引用
收藏
页数:18
相关论文
empty
未找到相关数据