A novel multi-scale convolutional neural network incorporating multiple attention mechanisms for bearing fault diagnosis

被引:4
|
作者
Hu, Baoquan [1 ,2 ]
Liu, Jun [1 ]
Xu, Yue [3 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[2] Xian Int Univ, Sch Engn, Xian 710077, Peoples R China
[3] Northwestern Polytech Univ, Sch Automat, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Rolling bearing; Feature map visualisation; Multi-scale; Attention mechanism;
D O I
10.1016/j.measurement.2024.115927
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a multi-scale convolutional neural network (CNN) fault diagnosis model incorporating multiple attention mechanisms (MMCNN) to address the limitations of conventional CNNs in learning critical fault features, which impacts the accuracy of rolling bearing fault diagnosis. The proposed approach first introduces a convolutional structure characterized by multi-channel and multi-scale attributes, designed to expand the network's receptive field and effectively capture salient features across various dimensions. Subsequently, we enhance and integrate three distinct attention mechanisms-position attention mechanism (PAM), channel attention mechanism (CAM), and squeeze-and-excitation attention mechanism (SEAM)-into the multi-scale feature extraction model. These mechanisms collectively optimize the network's learning process by mitigating the influence of irrelevant signal components and adaptively amplifying the response to fault features. Finally, by visualizing the feature maps from the intermediate layers of the model, we demonstrate that the proposed method significantly improves both the feature extraction capability and fault type recognition accuracy of the model.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Attention mechanism based multi-scale feature extraction of bearing fault diagnosis
    Lei, Xue
    Lu, Ningyun
    Chen, Chuang
    Hu, Tianzhen
    Jiang, Bin
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2023, 34 (05) : 1359 - 1367
  • [42] Multi-scale deep neural network for fault diagnosis method of rotating machinery
    Xie, Yining
    Liu, Wang
    Liu, Xiu
    Chen, Deyun
    Guan, Guohui
    He, Yongjun
    FERROELECTRICS, 2023, 602 (01) : 215 - 230
  • [43] Multi-scale attention network (MSAN) for track circuits fault diagnosis
    Tao, Weijie
    Li, Xiaowei
    Liu, Jianlei
    Li, Zheng
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [44] A Multi-scale Attention-Based Transfer Model for Cross-bearing Fault Diagnosis
    Puda Li
    International Journal of Computational Intelligence Systems, 17
  • [45] A Multi-scale Attention-Based Transfer Model for Cross-bearing Fault Diagnosis
    Li, Puda
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [46] Diagnosis of Alzheimer's disease via an attention-based multi-scale convolutional neural network
    Liu, Zhenbing
    Lu, Haoxiang
    Pan, Xipeng
    Xu, Mingchang
    Lan, Rushi
    Luo, Xiaonan
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [47] An intelligent diagnosis method of rolling bearing based on multi-scale residual shrinkage convolutional neural network
    Zhao, Xiaoqiang
    Zhang, Yazhou
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (08)
  • [48] Fault Diagnosis of Analog Circuits Based on Multi-Scale 1D Convolutional Neural Network
    Wang, Weiwei
    Zhang, Yongchao
    You, Feng
    Yin, Zhigang
    Zhao, Ruilian
    2023 IEEE 32ND ASIAN TEST SYMPOSIUM, ATS, 2023, : 88 - 93
  • [49] Multi-scale deep coupling convolutional neural network with heterogeneous sensor data for intelligent fault diagnosis
    Tian, Jinghui
    Han, Dongying
    Xiao, Lifeng
    Shi, Peiming
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2225 - 2238
  • [50] Rolling Bearing Fault Diagnosis Based on Refined Composite Multi-Scale Approximate Entropy and Optimized Probabilistic Neural Network
    Ma, Jianpeng
    Li, Zhenghui
    Li, Chengwei
    Zhan, Liwei
    Zhang, Guang-Zhu
    ENTROPY, 2021, 23 (02) : 1 - 28