A novel multi-scale convolutional neural network incorporating multiple attention mechanisms for bearing fault diagnosis

被引:3
|
作者
Hu, Baoquan [1 ,2 ]
Liu, Jun [1 ]
Xu, Yue [3 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[2] Xian Int Univ, Sch Engn, Xian 710077, Peoples R China
[3] Northwestern Polytech Univ, Sch Automat, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Rolling bearing; Feature map visualisation; Multi-scale; Attention mechanism;
D O I
10.1016/j.measurement.2024.115927
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a multi-scale convolutional neural network (CNN) fault diagnosis model incorporating multiple attention mechanisms (MMCNN) to address the limitations of conventional CNNs in learning critical fault features, which impacts the accuracy of rolling bearing fault diagnosis. The proposed approach first introduces a convolutional structure characterized by multi-channel and multi-scale attributes, designed to expand the network's receptive field and effectively capture salient features across various dimensions. Subsequently, we enhance and integrate three distinct attention mechanisms-position attention mechanism (PAM), channel attention mechanism (CAM), and squeeze-and-excitation attention mechanism (SEAM)-into the multi-scale feature extraction model. These mechanisms collectively optimize the network's learning process by mitigating the influence of irrelevant signal components and adaptively amplifying the response to fault features. Finally, by visualizing the feature maps from the intermediate layers of the model, we demonstrate that the proposed method significantly improves both the feature extraction capability and fault type recognition accuracy of the model.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Adversarial training of multi-scale channel attention network for enhanced robustness in bearing fault diagnosis
    Peng, Haotian
    Du, Jinsong
    Gao, Jie
    Wang, Yu
    Wang, Wei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [32] A new multi-modal time series transformation method and multi-scale convolutional attention network for railway wagon bearing fault diagnosis
    Men, Zhihui
    Li, Yonghua
    Tang, Wuchu
    Wang, Denglong
    Cao, Jiahong
    JOURNAL OF VIBRATION AND CONTROL, 2024,
  • [33] A multi-scale convolutional neural network based fault diagnosis model for complex chemical processes
    Song, Qiusheng
    Jiang, Peng
    Process Safety and Environmental Protection, 2022, 159 : 575 - 584
  • [34] Rolling bearing fault diagnosis method based on multi-scale pooling residual convolutional neural network under noisy environment
    Lei, Chunli
    Miao, Chengxiang
    Yu, Yongqin
    Wang, Lu
    Wang, Bin
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2025, 27 (01):
  • [35] Multi-Scale Channel Mixing Convolutional Network and Enhanced Residual Shrinkage Network for Rolling Bearing Fault Diagnosis
    Li, Xiaoxu
    Chen, Jiaming
    Wang, Jianqiang
    Wang, Jixuan
    Wang, Jiahao
    Li, Xiaotao
    Kan, Yingnan
    ELECTRONICS, 2025, 14 (05):
  • [36] Rolling Bearing Fault Diagnosis Method Based on Self-Calibrated Coordinate Attention Mechanism and Multi-Scale Convolutional Neural Network Under Small Samples
    Xue, Linlin
    Lei, Chunli
    Jiao, Mengxuan
    Shi, Jiashuo
    Li, Jianhua
    IEEE SENSORS JOURNAL, 2023, 23 (09) : 10206 - 10214
  • [37] A multi-scale convolutional neural network based fault diagnosis model for complex chemical processes
    Song, Qiusheng
    Jiang, Peng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 159 : 575 - 584
  • [38] Multi-scale Attention Convolutional Neural Network for time series classification
    Chen, Wei
    Shi, Ke
    NEURAL NETWORKS, 2021, 136 (136) : 126 - 140
  • [39] A novel intelligent fault diagnosis method of bearing based on multi-head self-attention convolutional neural network
    Ren, Hang
    Liu, Shaogang
    Qiu, Bo
    Guo, Hong
    Zhao, Dan
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2024, 38
  • [40] A novel two-stream multi-head self-attention convolutional neural network for bearing fault diagnosis
    Ren, Hang
    Liu, Shaogang
    Wei, Fengmei
    Qiu, Bo
    Zhao, Dan
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2024, 238 (11) : 5393 - 5405