A novel multi-scale convolutional neural network incorporating multiple attention mechanisms for bearing fault diagnosis

被引:3
|
作者
Hu, Baoquan [1 ,2 ]
Liu, Jun [1 ]
Xu, Yue [3 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
[2] Xian Int Univ, Sch Engn, Xian 710077, Peoples R China
[3] Northwestern Polytech Univ, Sch Automat, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Rolling bearing; Feature map visualisation; Multi-scale; Attention mechanism;
D O I
10.1016/j.measurement.2024.115927
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a multi-scale convolutional neural network (CNN) fault diagnosis model incorporating multiple attention mechanisms (MMCNN) to address the limitations of conventional CNNs in learning critical fault features, which impacts the accuracy of rolling bearing fault diagnosis. The proposed approach first introduces a convolutional structure characterized by multi-channel and multi-scale attributes, designed to expand the network's receptive field and effectively capture salient features across various dimensions. Subsequently, we enhance and integrate three distinct attention mechanisms-position attention mechanism (PAM), channel attention mechanism (CAM), and squeeze-and-excitation attention mechanism (SEAM)-into the multi-scale feature extraction model. These mechanisms collectively optimize the network's learning process by mitigating the influence of irrelevant signal components and adaptively amplifying the response to fault features. Finally, by visualizing the feature maps from the intermediate layers of the model, we demonstrate that the proposed method significantly improves both the feature extraction capability and fault type recognition accuracy of the model.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Bearing Fault Diagnosis Based on Shallow Multi-Scale Convolutional Neural Network with Attention
    Huang, Tengda
    Fu, Sheng
    Feng, Haonan
    Kuang, Jiafeng
    ENERGIES, 2019, 12 (20)
  • [2] Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network
    Shen, Qimin
    Zhang, Zengqiang
    IEEE ACCESS, 2024, 12 : 12940 - 12952
  • [3] Rolling bearing fault diagnosis with multi-scale multi-task attention convolutional neural network
    Wang, Zhaowei
    Liu, Chuanshuai
    Zhao, Wenxiang
    Song, Xiangjin
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (07): : 65 - 76
  • [4] Multi-scale convolutional network with channel attention mechanism for rolling bearing fault diagnosis
    Huang, Ya-Jing
    Liao, Ai-Hua
    Hu, Ding-Yu
    Shi, Wei
    Zheng, Shu-Bin
    MEASUREMENT, 2022, 203
  • [5] An improved deep convolutional neural network with multi-scale information for bearing fault diagnosis
    Huang, Wenyi
    Cheng, Junsheng
    Yang, Yu
    Guo, Gaoyuan
    NEUROCOMPUTING, 2019, 359 : 77 - 92
  • [6] An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
    Xu, Meng
    Shi, Yaowei
    Deng, Minqiang
    Liu, Yang
    Ding, Xue
    Deng, Aidong
    PLOS ONE, 2023, 18 (09):
  • [7] Bearing Fault Diagnosis Based on Multi-Scale Adaptive Selective Convolutional Neural Network
    Zhang X.
    Shang J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2024, 58 (02): : 127 - 135
  • [8] A Multi-Scale Convolutional Neural Network with Self-Knowledge Distillation for Bearing Fault Diagnosis
    Yu, Jiamao
    Hu, Hexuan
    MACHINES, 2024, 12 (11)
  • [9] Multi scale convolutional neural network combining BiLSTM and attention mechanism for bearing fault diagnosis under multiple working conditions
    Zhao Dengfeng
    Tian Chaoyang
    Fu Zhijun
    Zhong Yudong
    Hou Junjian
    He Wenbin
    Scientific Reports, 15 (1)
  • [10] A multi-scale convolutional neural network for bearing compound fault diagnosis under various noise conditions
    Jin YanRui
    Qin ChengJin
    Zhang ZhiNan
    Tao JianFeng
    Liu ChengLiang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (11) : 2551 - 2563